
Enhancing Coverage-Guided Fuzzing via Phantom Program
Mingyuan Wu

∗

Southern University of Science and

Technology

Shenzhen, China

The University of Hong Kong

Hong Kong, China

11849319@mail.sustech.edu.cn

Kunqiu Chen

Qi Luo

Jiahong Xiang

11911626@mail.sustech.edu.cn

12232440@mail.sustech.edu.cn

11812613@mail.sustech.edu.cn

Southern University of Science and

Technology

Shenzhen, China

Ji Qi

The University of Hong Kong

Hong Kong, China

jqi@cs.hku.hk

Junjie Chen

College of Intelligence and

Computing, Tianjin University

Tianjin, China

junjiechen@tju.edu.cn

Heming Cui

The University of Hong Kong

Hong Kong, China

heming@cs.hku.hk

Yuqun Zhang
†

Southern University of Science and

Technology

Shenzhen, China

zhangyq@sustech.edu.cn

ABSTRACT
For coverage-guided fuzzers, many of their adopted seeds are usu-

ally ineffective by exploring limited program states since essen-

tially all their executions have to abide by rigorous dependencies

between program branches while only limited seeds are capable

of accessing such dependencies. Moreover, even when iteratively

executing such limited seeds, the fuzzers have to repeatedly access

the covered program states before uncovering new states. Such

facts indicate that exploration power on program states of seeds

has not been sufficiently leveraged by the existing coverage-guided

fuzzing strategies. To tackle these issues, we propose a coverage-

guided fuzzer, namely MirageFuzz, to mitigate the dependencies

between program branches when executing seeds for enhancing

their exploration power on program states. Specifically, Mirage-
Fuzz first creates a “phantom” program of the target program by

reducing its dependencies corresponding to conditional statements

while retaining their original semantics. Accordingly, MirageFuzz
performs dual fuzzing, i.e., the source fuzzing to fuzz the original

program and the phantom fuzzing to fuzz the phantom program

simultaneously. Then, MirageFuzz generates a new seed for the

source fuzzing via a taint-based mutation mechanism, i.e., updating

the target conditional statement of a given seed from the source

∗
Mingyuan Wu is also affiliated with the Research Institute of Trustworthy Au-

tonomous Systems, Shenzhen, China.

†
Yuqun Zhang is the corresponding author. He is also affiliated with the Research

Institute of Trustworthy Autonomous Systems, Shenzhen, China and Guangdong

Provincial Key Laboratory of Brain-inspired Intelligent Computation, China

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00

https://doi.org/10.1145/3611643.3616294

fuzzing with its corresponding condition value derived by the phan-
tom fuzzing. To evaluate the effectiveness of MirageFuzz, we build
a benchmark suite with 18 projects commonly adopted by recent

fuzzing papers, and select nine open-source fuzzers as baselines for

performance comparison with MirageFuzz. The experiment results

suggest that MirageFuzz outperforms our baseline fuzzers from

13.42% to 77.96% averagely. Furthermore, MirageFuzz exposes 29
previously unknown bugs where 7 of them have been confirmed

and 6 have been fixed by the corresponding developers.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Fuzzing, Coverage Guidance, Phantom Program

ACM Reference Format:
MingyuanWu, Kunqiu Chen, Qi Luo, Jiahong Xiang, Ji Qi, Junjie Chen, Hem-

ing Cui, and Yuqun Zhang. 2023. Enhancing Coverage-Guided Fuzzing via

Phantom Program. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3611643.3616294

1 INTRODUCTION
Fuzzing [44] refers to automatically generating invalid, unexpected,

or random test inputs (i.e., seeds) to expose unexpected program

behaviors, e.g., crashes and memory leaks, which can be further

analyzed to detect vulnerabilities/bugs of target programs. In partic-

ular, many existing fuzzers [18, 28, 42, 47, 78] have widely adopted

code coverage as guidance of their fuzzing strategies to advance

bug/vulnerability exposure. Typically, based on an initial collection

of seeds, a coverage-guided fuzzer develops its fuzzing strategy

to iteratively generate new seeds (often via mutation) for increas-

ing/optimizing code coverage.

Albeit many coverage-guided fuzzers have been shown effective

in terms of code coverage and bug exposure [23, 39, 45, 72], their

https://doi.org/10.1145/3611643.3616294
https://doi.org/10.1145/3611643.3616294

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingyuan Wu, Kunqiu Chen, Qi Luo, Jiahong Xiang, Ji Qi, Junjie Chen, Heming Cui, and Yuqun Zhang

coverage-guided strategies are still somewhat restricted to hinder

their further performance improvement. In particular, the exist-

ing coverage-guided fuzzing strategies typically require complete

execution on each seed, i.e., exploring program states bounded

by rigorous dependencies between program branches (referred

to as program dependencies in the rest of the paper for simplic-

ity). It has been widely shown that in this way, many seeds are

executed to only result in the limited state exploration of target

programs [42, 63, 79, 80], indicating that a large number of such

seeds are ineffective in exposing new program states. Furthermore,

even for the limited number of seeds which can effectively explore

program states, their iterative executions are still subject to rigor-

ous program dependencies, i.e., incrementally exploring program

states in order. As a result, the fuzzers have to repeatedly access

the covered program states before uncovering new program states

under each iterative execution. Such facts indicate that the seed-

wise exploration power on program states has not been sufficiently

leveraged by the existing coverage-guided fuzzing strategies.

In this paper, we attempt to tackle the aforementioned limitations

of the seed-wise exploration power for the existing coverage-guided

fuzzing strategies. Our key insight is that instead of only using a

limited number of effective seeds for incrementally exploring pro-

gram states under iterative executions, we seek to exploit more

effective seeds as well as the exploration on separate program states

by reducing their inter-dependencies so as to enhance the efficacy

of coverage-guided fuzzing. Accordingly, we propose MirageFuzz,
the first fuzzer which attempts to mitigate the rigorous compli-

ance with all inter-dependencies between program states when

executing coverage-guided fuzzing strategies for enhancing the ex-

ploration power of all seeds. To this end, for a given target program,

we first derive its control flow graph and identify the conditional

instruction in each basic block and all the instructions affecting

it in the intermediate representation (IR) level [41, 59]. Then we

relocate such instructions to their farthest dominator while pre-

serving the original semantics of the conditional instruction, i.e.,

reducing program dependencies, as forming a “phantom” program.

Next, MirageFuzz performs dual fuzzing, i.e., fuzzing the original

program and its phantom program simultaneously, namely source
fuzzing and phantom fuzzing. More specifically, after the source
fuzzing upon a given seed 𝑆 , we collect the unexplored program

branches adjoining the explored program states and search for any

seed generated by the phantom fuzzing which can be executed to

explore any of such branches. If such a seed 𝑆 ′ exists, we then iden-

tify the byte offset of 𝑆 corresponding to the conditional instruction

of the unexplored branch via taint analysis [60] and further update

it using the corresponding condition value derived by 𝑆 ′ to form

a new seed for further source fuzzing. Eventually, executing the

resulting new seed can advance the exploration of the program

states bounded by the corresponding conditional instruction and

thus enhances the seed effectiveness on exploring program states.

To evaluate the effectiveness of MirageFuzz, we first collected
18 real-world projects which were frequently adopted in recent

fuzzing research as our benchmark suite. We further collected nine

open-source coverage-guided fuzzers as our baselines for perfor-

mance comparison withMirageFuzz. Our evaluation results suggest

that MirageFuzz outperformed the baseline fuzzers significantly by

13.42% to 77.96% on average in terms of the edge coverage. More-

over, MirageFuzz exposed 29 previously unknown bugs where 7

of them have been confirmed and 6 have been fixed by the corre-

sponding developers.

In summary, our paper makes the following contributions:

• Idea. To the best of our knowledge, we are the first to propose

the concept of phantom program which reduces program depen-

dencies and perform dual fuzzing to synergize the source fuzzing
and the phantom fuzzing to enhance coverage-guided fuzzing.

• Technique.We have implemented the proposed idea as an open-

source practical tool, namely MirageFuzz, as released in our

GitHub page [4].

• Evaluation.We evaluate MirageFuzz upon a real-world bench-

mark with 18 open-source projects compared with nine baseline

fuzzers. The evaluation results indicate that MirageFuzz outper-
forms all baseline fuzzers averagely from 13.42% to 77.96% in

terms of edge coverage. Moreover, MirageFuzz exposed 29 previ-

ously unknown bugs where 7 of which have been confirmed and

6 have been fixed by the corresponding developers.

2 MOTIVATION
In this section, we use a sample code snippet following prior work

as in Figure 1a [43] to motivate MirageFuzz. Specifically, the func-
tion Origin takes a character array user as input and processes

it in nested branches. Note that many existing coverage-guided

fuzzers [18, 28, 42, 47, 72, 78] incrementally increase code coverage

under each iterative execution. Therefore, to trigger the crash on

line 7 of function Origin, first, given an initial seed successfully ex-

ploring line 3, it is ideal to generate a mutant which can be executed

to successfully explore line 4 under controllable effort with the re-

sulting mutant retained as the new seed. The above operation is

then repeated for the subsequent statements until line 6 can be suc-

cessfully explored. However, the mutation space for each statement

is essentially vast, e.g., for line 3, user[0] can be assigned with 256

possible values while it has to be ‘M’ only to successfully access its

scope. Thus, We can derive that the chance of a seed to explore 4

consecutive similar statements could be rather trivial, resulting in

many underused seeds for fuzzing. To summarize, the exploration

power on program states of a seed can be somewhat limited by

applying many existing coverage-guided fuzzing strategies.

We consider the key factor limiting the effectiveness of coverage-

guided fuzzing strategies is that they require the seeds to rigorously

abide by the program dependencies, i.e., being thoroughly executed,

until exposing a bug/vulnerability. Specifically in Figure 1a, the

execution on one seed has to satisfy all the dependencies of line 7,

i.e., lines 3 to 6, before exposing the relevant crash. Moreover, the

program states subject to such program dependencies even have to

be repeatedly accessed under iterative executions, e.g., line 3 has

to be explored by all the iterative executions until exploring line 7.

Therefore, in this paper, we attempt to enhance the effectiveness

of coverage-guided fuzzing strategies by mitigating the rigorous

compliance with all inter-dependencies between program states

on performing coverage-guided fuzzing strategies. In particular,

a straightforward insight is to reduce program dependencies for

preventing the aforementioned executions. We can observe from

Figure 1a that actually the conditional statements of lines 3 to 6

Enhancing Coverage-Guided Fuzzing via Phantom Program ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 void Origin(char *user){
2 user[4] = '\0';
3 if (user[0] == 'M') {
4 if (user[1] == 'A')
5 if (user[2] == 'Z')
6 if (user[3] == 'E')
7 // crash
8 } else {
9 ...
10 // other code
11 }
12 return;
13 }
14

(a) The original code

1 void Phantom(char *user){
2 user[4] = '\0';
3 if (user[0] == 'M');
4 if (user[1] == 'A');
5 if (user[2] == 'Z');
6 if (user[3] == 'E')
7 // crash
8 if (user[0] != 'M'){
9 ...
10 // other code
11 }
12 return;
13 }
14

(b) The phantom code
Figure 1: A motivation example code forMirageFuzz

are not related to one another, i.e., each of them can be satisfied

independently (the operands of line 6 are irrelevant with line 3).

Therefore, it is unnecessary to form nested dependencies among

such conditional statements. Instead, we could reduce their depen-

dencies as in function Phantom of Figure 1b where their respective

executions are independent from each other. For example, the exe-

cutions on all the seeds can easily access line 6 to check whether

the runtime value of user[3] is ‘E’. Thus, we can infer that the

chance to expose the crash in line 7 can be significantly enhanced

compared with Figure 1a. Such an example can be rather inspiring

for how to enhance the power of exploring program states of the

mutants. Specifically, suppose a fuzzing campaign is halted upon

line 6 in Figure 1a, i.e., it satisfies line 5 but fails to satisfy line 6.

We can attempt to obtain the byte offset of the running seed cor-

responding to line 6, i.e., the branch condition “user[3] == ‘E’”,
via taint analysis. If we could also identify a seed which can be exe-

cuted to explore the same branch condition in Figure 1b, we could

then apply taint analysis again on that seed to obtain the operand

value and use it to update the byte offset of the seed running in

Figure 1a. At last, the resulting mutant can be executed to satisfy

line 6 in Figure 1a and thus trigger the crash, indicating that the

power of exploring program states of the original seed is improved.

Accordingly, in this paper, we are inspired to propose a technique

which aims at reducing program dependencies for enhancing the

exploration power of seeds on program states.

Note that our mission in Figure 1 is seemingly close to advance

the exploration of program states which many existing fuzzers [24,

25, 39, 43, 64, 77] attempt to tackle by proposing diverse techniques,

e.g., recording the auxiliary states for program exploration depth

or integrating constraint solver [51]. However, due to the afore-

mentioned limitation of the well-adopted coverage guidance, they

still generate massive ineffective seeds, i.e., only limited seeds are

effective to explore program states. To illustrate, that essentially is

the issue we attempt to address in this paper.

3 APPROACH
Figure 2 shows the overall workflow of MirageFuzz which consists

of three components. First, MirageFuzz creates a phantom program

to reduce dependencies in the target program via a dependency

reduction mechanism (marked as ❶ in Figure 2, Section 3.1). Next,

MirageFuzz performs dual fuzzing—the source fuzzing to fuzz the

original program and the phantom fuzzing to fuzz its correspond-

ing phantom program simultaneously (❷, Section 3.2). Specifically,

during iterative executions of the source fuzzing under a given seed

𝑆 , MirageFuzz obtains the unexplored program branches adjoining

the explored program states and searches for whether any of them

has been explored by a seed (or multiple seeds) generated from the

phantom fuzzing. At last, if such a seed 𝑆 ′ exists, we then update

the corresponding branch condition of 𝑆 with the value derived by

𝑆 ′ to form a new seed for future source fuzzing (❸, Section 3.3).

3.1 Dependency Reduction Mechanism
We first derive the control-flow graph (CFG) of the given target

program and then identify all the branch instructions in the inter-

mediate representation (IR) level [41, 59]. Next, for the conditional

instruction in each basic block and all the instructions affecting

it, we attempt to relocate them to their farthest dominator (in this

paper, we follow prior work [3] that in a control-flow graph, a block

a is a dominator of a block b if every path from the entry block

to b must go through a). In this way, we essentially reduce the

dependencies among program branches. Here we use the code snip-

pets from a real-world project jhead [5] in Figure 3 with the CFG

generated by LLVM dot-cfg pass [2] for illustration. In particular,

Figure 3 presents a total of 8 basic blocks where T represents that
the corresponding condition is evaluated as “true” and F represents

otherwise. For instance, by relocating the conditional instruction

bool cmp3 = !strcmp(arg, "-proc") of block ④ in its farthest

dominator, i.e., entry block ①, their original dependency can thus

be reduced. As a result, the execution on a seed can directly explore

block ④ without exploring its original dependency with entry block

① in advance. Obviously, the chance to explore block ④ can be in-

creased, indicating the exploration power of seeds can be increased.

Inspired by Section 2, we realize that by preserving the entry

condition of each branch in the target program, we can utilize the

dependency-reduced program to facilitate the exploration of new

program states in the original program. However, relocating in-

structions can easily violate the semantics of the original program

branches (i.e., the entry condition of a program branch). For in-

stance in Figure 3, relocating instructions from block ⑤ to entry

block ① can violate the original semantics of block ③. In particular,

by executing the instruction sscanf(argv[++n], "%d", &PO) of

block ⑤ in entry block ① after instruction relocation, the value of

variable ret calculated via instruction sscanf(argv[++n], "%d",
&FQ) of block ② is changed since its variable n has already been

updated in entry block ①. Accordingly, the semantics of condi-

tion bool cmp2 = (ret != 1) for block ③ would be violated.

Note that while it is essential to preserve the semantics of branch

conditions for correctly exploring their covered program states

by executing seeds, it is unnecessary to preserve the semantics of

other statements since changing them exerts no impact in accessing

the updated blocks (i.e., for an operand not in a branch condition,

its value is allowed to be changed after branch relocation if it is

irrelevant to the operand value(s) of any branch condition).

In this paper, we propose a dependency reduction mechanism to

reduce program dependencies by relocating conditional instruction

and the instructions affecting it while preserving original semantics

of each conditional instruction as shown in Algorithm 1. For a given

CFG of the target program, we first obtain all the basic blocks (rep-

resented as blocks) with the conditional instruction of each basic

block (represented as branchCon, lines 2 to 4). Next, for each block,

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingyuan Wu, Kunqiu Chen, Qi Luo, Jiahong Xiang, Ji Qi, Junjie Chen, Heming Cui, and Yuqun Zhang

Figure 2: The workflow ofMirageFuzz

Figure 3: A simplified real-world example from jhead

we identify all the basic blocks with the instructions affecting its

conditional instruction, i.e., sharing variable usage, via program

slicing [71]. Note that for the function slicingBasicBlocks, we
perform the program slicing which extracts the dependent instruc-

tions of branchCon by applying the use-def chains in both LLVM

IR [41] and Memory SSA [9, 53] to obtain their associated blocks

collectedBlocks (line 5). Furthermore, we filter out the domina-

tors of branchCon whose semantics can be possibly violated by

relocating the conditional instruction and the instructions affecting

it (line 6). If there is no remaining basic block after filtering, we

can infer that all the instructions can be relocated in the entry

block (lines 7 to 8). Otherwise, we identify the farthest domina-

tor in CFG to which all the instructions can be relocated without

violating semantics on the conditional instruction (lines 10 to 12)

and perform the instruction relocation (lines 13 to 14). After the

iterative executions on all the collected conditional instructions, we

obtain a phantom program for MirageFuzz (line 15). Note that for
the phantom program, we only preserve semantics for conditional

instructions as in the original program such that its adopted seeds

Algorithm 1 Dependency Reduction Mechanism

Input: source
Output: phantom

1: function ReduceDependencies

2: blocks← getBasicBlocks(source)
3: for each block in blocks do
4: branchCon← getBranchExpression(block)
5: collectedBlocks← slicingBasicBlocks(branchCon)
6: remainBlocks← {b ∈ collectedBlocks ∥ violateSemanticsAfterRe-

locating(b) is True ∧ isDominator(b, branchCon) is True}
7: if remainBlocks is ∅ then
8: entrance← getEntryBlock(blocks)
9: else
10: entrance← randomChoice(remainBlocks)
11: for each B in remainBlocks do
12: entrance← entrance dominates B ? B : entrance
13: instructions← getRelatedInstructions(collectedBlocks)
14: move instructions to entrance
15: phantom← reconstruct(blocks)
16: return phantom

can be used to advance program state exploration when fuzzing the

original program (illustrated later) while the semantics of the rest

instructions does not matter for building our phantom program.

Accordingly in Figure 3 , the conditional instructions located in

② and ⑤ cannot be relocated since ++n violates the semantics of

the branch conditions where n is an operand. On the contrary, the

conditional instructions in ⑥ and ④ are relocated to ⑤ and ① since

the semantics of all involved branch conditions can be preserved

after relocation (more details are presented in our GitHub page [4]).

3.2 Dual Fuzzing
Given the phantom program by applying the dependency reduc-

tion mechanism, MirageFuzz performs dual fuzzing, i.e., the source
fuzzing to fuzz the original program and the phantom fuzzing to fuzz
the phantom program simultaneously, under the identical initial

seed corpus and execution time budget. During the source fuzzing,
MirageFuzz collects the unexplored program branches adjoining the

explored program states. Then, MirageFuzz searches for any seed

Enhancing Coverage-Guided Fuzzing via Phantom Program ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Algorithm 2 Dual Fuzzing

Input: initialSeed, budget
Output: None

1: function FuzzingSourceProgram

2: seeds← {initialSeed}
3: while fuzzing time not exceed budget do
4: for each seed in seeds do
5: mutant← AFLMutation(seed)
6: if mutant has new edges then
7: seeds← seeds ∪ {mutant}
8: edges← getUnexploredEdges(seed)
9: phantomSeeds← requestSeedsFromPhantom(edges)
10: taintSeeds ← GenerateSeedWithTaint(seed, phantom-

Seeds)
11: for each tSeed in taintSeeds do
12: if tSeed has new edges then
13: seeds← seeds ∪ {tSeed}
14: return None
15: function FuzzingPhantom

16: seeds← {initialSeed}
17: edgeDic← [[edge⇒ {}]]
18: while fuzzing time not exceed budget do
19: if has requests from source fuzzing then
20: resp← {}

21: for each edge in requests do
22: resp← resp ∪ edgeDic[[edge]]
23: Send resp to source fuzzing
24: for each seed in seeds do
25: mutant← AFLMutation(seed)
26: if mutant has new edges then
27: seeds← seeds ∪ {mutant}
28: for each edge in mutant do
29: edgeDic[[edge]] ← edgeDic[[edge]] ∪ {mutant}

30: return None

executed to explore such collected branches in the phantom fuzzing
for later generating new seeds to advance the source fuzzing.

Algorithm 2 presents the details for the dual fuzzing. In particular,

for the source fuzzing, we first adopt the AFL mutation strategy [72]

to generate mutants out of our initial seed corpus (lines 2 to 5). If

any mutant is executed to explore new edges, it is added into the

seed corpus for further iterative executions (lines 6 to 7). Meanwhile,

we derive the unexplored program edges adjoining the explored

program states by executing the given mutant, and check whether

they can be explored by executing any of the seeds generated from

the phantom fuzzing (lines 8 to 9). If such a seed exists, we then

adopt the taint-based mutation mechanism (illustrated later) to

generate a new seed for the future source fuzzing (lines 10 to 13),

For the phantom fuzzing, we create a dictionary edgeDic to store
the information of the explored edges with their corresponding

executed seeds (lines 16 to 17). For each iterative execution, we first

check the real-time unexplored edges from the source fuzzing (lines

18 to 19). Then, we iterate each unexplored edge to find whether it

has been already explored by executing any seed generated by the

phantom fuzzing (lines 20 to 23). Similar to the source fuzzing, we
also adopt the AFL mutation strategy to generate mutants (lines 24

to 25). If executing any mutant explores new edges, it is added to

the seed corpus where edgeDic is updated (lines 28 to 29).

Algorithm 3 Taint-based Mutation Mechanism

Input: sourceSeed, phantomSeeds
Output: taintSeeds

1: function GenerateSeedWithTaint

2: taintSeeds← {}

3: exploredEdges← getAllExploredEdgesFromSource()
4: for each mSeed in phantomSeeds do
5: for each edge in mSeed’s execution path do
6: if edge not in exploredEdges then
7: taintPos← taintPosition(edge, sourceSeed)
8: value← taintContent(edge, mSeed)
9: mutant← sourceSeed
10: mutant[taintPos]← value
11: taintSeeds← taintSeeds ∪ {mutant}
12: return taintSeeds

In Figure 3, assume a seed is executed to explore the path

[①,④,⑤,⑦,⑧] for the source fuzzing. Then we can derive the unex-

plored edges adjoining the explored path, i.e., ①→②, ④→⑧, and

⑤→⑥, which are further collected in edgeDic for the phantom
fuzzing. For each edge, MirageFuzz searches for any seed executed

to explore it in the phantom fuzzing. At last, all the collected seeds

from the phantom fuzzing are used to generate new seeds for future

source fuzzing via the taint-based mutation mechanism.

3.3 Taint-based Mutation Mechanism
We develop the taint-based mutation mechanism to derive the byte

offset corresponding to the conditional instruction of the given

seed from the source fuzzing with its value derived by the phantom
fuzzing via taint analysis [60]. Specifically, in our adopted taint

analysis, the input stream (i.e., the seed) is referred to as the sole

taint source. In order to trace the tainted labels at runtime, we define

taint propagation rules to map the tainted input labels and output

labels (e.g., add, store, and load instructions) at a particular level

of the operation hierarchy. Accordingly, given a specific branch

condition, we can collect its corresponding label for its operand or

the relevant byte offset of such a operand in the seed.

Algorithm 3 illustrates the details of the taint-based mutation

mechanism which is initialized with the seed to be mutated by the

source fuzzing (denoted as sourceSeed) and the collected seeds

from the phantom fuzzing which can be executed to explore the

identified unexplored edges from the source fuzzing (denoted as

phantomSeeds). We first obtain all real-time explored edges (line

3). Next, for each seed in the phantomSeeds, we iterate its explored
edges (lines 4 to 5). If the edge is not explored by the source fuzzing,
we then derive the byte offset taintPos corresponding to the con-

ditional instruction by taint analysis in the sourceSeed (lines 6 to

7). Subsequently, we also obtain the corresponding condition value
by taint analysis in the given mSeed from phantomSeeds (line 8).

To illustrate, note that to prevent the misallignment between the

byte offset of mSeed corresponding to the condition value and

taintPos, we activate two taint analysis processes for sourceSeed
and mSeed respectively. Specifically, we first apply taint analysis

in the source fuzzing for obtaining the byte offset of the seed (i.e.,

sourceSeed) corresponding to the given unexplored branch con-

dition from the source program. If we could identify a seed (i.e.,

mSeed) which can be executed to explore such a branch condition

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingyuan Wu, Kunqiu Chen, Qi Luo, Jiahong Xiang, Ji Qi, Junjie Chen, Heming Cui, and Yuqun Zhang

in the phantom fuzzing, we then apply taint analysis again on that

seed to obtain values of the involved operand corresponding to the

branch condition. Accordingly, we generate a mutant by updating

taintPos with the corresponding value from the seed generated

by the phantom fuzzing, and then store it in the set taintSeeds
(lines 9 to 11). At last, the resulting taintSeeds is used for advanc-

ing the future source fuzzing. We take the same seed 𝑆 exploring

path [①,④,⑤,⑦,⑧] mentioned in Section 3.2 as an example. Sup-

pose we have another seed 𝑆 ′ generated by the phantom fuzzing
which has satisfied the conditional instruction for block ⑥. Next, by

performing taint analysis on 𝑆 , we identify its byte offset impacting

the value of PO that determines the transition ⑤→⑥ or ⑤→⑦. We

further figure out that the value of PO in 𝑆 ′ is 14 via taint analysis on
𝑆 ′. Eventually, we replace the value of PO in 𝑆 with 14 to generate a

new seed for exploring the new edge ⑤→⑥ for the source fuzzing.

4 IMPLEMENTATION
We implement MirageFuzz using C/C++. Specifically, we perform
instrumentation via LLVM pass [41] to obtain runtime information

of target programs. Accordingly, we build MirageFuzz via the AFL
implementation. Furthermore, we modify the taint analysis library

libdft [36] to implement the taint-based mutation mechanism.

We encounter three main challenges when implementing Mi-
rageFuzz. First, it is challenging to identify the unexplored edges

adjoining the explored program states via instrumentation. Second,

adapting the existing taint analysis tool for the taint-based muta-

tion mechanism in MirageFuzz potentially leads to non-negligible

engineering effort. At last, implementing phantom fuzzing tends

to cause unexpected crashes which terminate the execution on the

phantom program early to prevent it from exploring deep program

states. We then illustrate how we address the challenges as follows.

4.1 Instrumentation
Note that in the source fuzzing, we aim at recognizing unexplored

edges adjoining the explored program states by executing a seed.

To this end, we insert an observation instruction ahead of a given

branch instruction to monitor whether any of its associated edges

has been explored by observing the associated sink state of such

branch. If the sink of the given branch instruction is not reached,

it indicates that the corresponding edge is unexplored. Therefore,

combining with the real-time collected explored edges, we can

derive the unexplored edges adjoining them.

4.2 Dynamic Taint Analysis
We adopt libdft [36], a stable and efficient binary-level dynamic

taint analysis framework adopted by many existing works [23, 58,

77], to implement the taint-based mutation mechanism. Although

libdft implemented the taint propagation rules for 146 instructions,

their default taint propagation rules still cannot cover our required

instructions, e.g., bswap (reversing the byte order of a register) and

shl (shifting the bits of a register to the left). We also analyze that

multiple taint labels of instructions movzx and movsx can cause

“over-taint” issues, leading to inefficient taint tracking. To tackle

these issues, we define our own taint propagation rules to cope

with 11 new instructions and revoke the redundant taint labels for

libdft to improve the taint-based mutation mechanism.

4.3 Crash Handling in Phantom Fuzzing
Generating the phantom program can inevitably devastate many

dependencies of the original program, incurring crashes which

potentially prevent the phantom fuzzing from exploring sufficient

states of the phantom program. To address this issue, we design a

“try-catch” mechanism to bypass these unexpected crashes. More

specifically, we first capture all crash-related system signals and

design their corresponding handler. Next, we obtain the runtime

program counter [66] value, and increase it with the length of

the real-time crash-triggered instruction to bypass it. As a result,

phantom fuzzing can proceed to explore program states instead of

being halted by the unexpected crashes.

With the solutions above, MirageFuzz is made scalable since it

can be directly adopted upon any projects built upon LLVM-based

compiler (e.g., clang [40]) without any additional adaptation effort.

5 EVALUATION
In this section, we conduct a set of experiments to evaluate the ef-

fectiveness of MirageFuzz upon 18 benchmark programs compared

with nine baseline fuzzers. In particular, we attempt to answer the

following research questions:

• RQ1: IsMirageFuzz effective compared with the baseline fuzzers?

• RQ2: Is each component of MirageFuzz effective in terms of

ablation study?

We also report and analyze the bugs on our benchmark suite ex-

posed by MirageFuzz. Note that all source code of MirageFuzz and
the evaluation details are presented in our GitHub pages [1, 4].

5.1 Baseline Fuzzers and Benchmark
Baseline fuzzers.To collect the baseline fuzzers for performance com-

parison with MirageFuzz, we determine to first select the coverage-

guided fuzzers recently published in prestigious software engineer-

ing and security conferences, e.g., ICSE, FSE, S&P, and CCS. Next,

we filter the selected fuzzers based on their source code availability

and the feasibility of their execution environments. Eventually, we

collect a total of nine fuzzers to form our baselines. More specifically,

we select six coverage-guided fuzzers, i.e., the latest versions of

AFL [78], AFL++ [28], LafIntel [7], Havoc𝑀𝐴𝐵 [72], MOPT [47] and

FairFuzz [42]. Moreover, we also adopt three recent fuzzers with

constraint solvers as our baselines, i.e., Angora [23], MEUZZ [25]

and QSYM [77], to further compare the performance of our insight

which enhances the exploration power of seeds without leveraging

the power of the constraint solver and the constraint-solving-based

fuzzers on their well-performed benchmarks.

Benchmark. Following multiple prior works [23, 42, 47, 72, 77], we

first construct our benchmark suite by collecting the projects com-

monly adopted by the fuzzers recently published in the aforemen-

tioned top software engineering and security conferences. Next, we

also include 6 projects from FuzzBench [50] in our benchmark suite.

As a result, our benchmark suite is formed by 18 frequently used

projects with their latest versions. We also present the statistics of

our adopted benchmarks in our GitHub page [1].

Enhancing Coverage-Guided Fuzzing via Phantom Program ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

5.2 Environment Setup
Our evaluations are performed on a server with 64-core 2.80GHz

Intel(R) Xeon(R) Gold 6342 CPUs and 64 GiB RAM running on

64-bit Linux version 4.15.0-172-generic Ubuntu 18.04.

Following many prior work [7, 28, 42, 47, 72, 77, 78], we set

the total execution time budget to 24 hours. Meanwhile, all our

evaluation results are averaged out of 10 runs. Furthermore, we

follow the seed selection strategy in prior work [33, 37, 42, 70] to

construct the initial seed corpus for each benchmark program from

either its corresponding AFL seed collection or its own test suite.

In this paper, we adopt edge coverage to represent code coverage,

as all our studied baseline fuzzers [7, 28, 42, 47, 72, 77, 78]. Here

an edge refers to a conditional jump between two basic blocks

in the program control flow. Note that since MirageFuzz enables
two instances in dual fuzzing, for fair performance comparison,

we evaluate all our baseline fuzzers in a parallel fuzzing manner,

i.e., enabling one additional instance which shares the same seed

corpus during the fuzzing campaign for all the baseline fuzzers

(except QSYM and MEUZZ which enable three processes sharing

the same seed queue by default [25, 77]).

5.3 Result Analysis
5.3.1 RQ1: the effectiveness of MirageFuzz. Table 1 presents the

edge coverage results of our studied fuzzers upon our benchmark

suite. Noticing that MEUZZ requires additional computation re-

source to analyze the target program for fuzzing, we mark a bench-

mark as N/A when MEUZZ fails to complete its execution after

consuming all memory resource (e.g., objcopy). Overall, we can

observe that MirageFuzz outperforms all other fuzzers significantly.

In particular, MirageFuzz explores 5773 edges on average, which is

13.42% more than the top-performing baseline fuzzer QSYM (5090

explored edges) and 77.96% more than the worst-performing base-

line fuzzer LafIntel (3244 explored edges) in our study. Additionally,

MirageFuzz consistently outperforms all the baseline fuzzers upon

each benchmark program. To illustrate the significance of the per-

formance, we also adopt the Mann-Whitney U test [48] in our

evaluation. We can observe that in Table 1 where the 𝑝-value of

MirageFuzz comparing with other studied fuzzers in terms of the

average edge coverage are all far below 0.05, which indicates that

MirageFuzz outperforms all selected fuzzers significantly (𝑝 < 0.05).

Furthermore, Figure 4 presents the edge coverage trends of all our

studied fuzzers upon each benchmark program within the 24-hour

execution. We can observe that MirageFuzz dominates the baseline

fuzzers under most of the execution time. Such results altogether in-

dicate that MirageFuzz is a rather powerful coverage-guided fuzzer.

We also investigate the effectiveness of exploring unique edges

(i.e., edges that can only be explored by a given fuzzer) for all our

studied fuzzers. In our evaluation, MirageFuzz can achieve the best

performance by exploring 4268 unique edges on top of the whole

benchmark suite averagely, which outperforms the top-performing

baseline Angora by 62.16% (4268 vs. 2632 edges). Due to the page

limit, we present the performance details in our GitHub page [1].

Finding 1: MirageFuzz is a rather powerful coverage-guided
fuzzer which can significantly and consistently outperform
the adopted baseline fuzzers.

Interestingly, while QSYM and Angora are generally more ef-

fective than other baseline fuzzers, the fact that MirageFuzz sig-

nificantly outperforms them on all benchmark programs without

applying a constraint solver indicates that its insight which en-

hances the exploration power of seeds via dual fuzzing only is

potentially even more powerful in exploring program states.

Finding 2: The mechanisms adopted by MirageFuzz are po-
tentially more effective than applying constraint solver for
exploring program states.

5.3.2 RQ2: the effectiveness of different components in MirageFuzz.
To further understand the mechanism adopted by MirageFuzz, in
this section, we perform in-depth ablation studies to investigate the

effectiveness of the dedicated components designed forMirageFuzz,
i.e., the phantom fuzzing and the taint-based mutation mechanism.

Effectiveness of the phantom fuzzing. Investigating the effective-
ness of the phantom fuzzing for MirageFuzz is essentially equiva-

lent to investigating the effectiveness of using the condition value

derived by the phantom fuzzing for mutating the corresponding

condition of the given seed for the source fuzzing. Accordingly,
we determine to create a technique variant MirageFuzz𝑡𝑎𝑖𝑛𝑡 of Mi-
rageFuzz which tracks the byte offset impacting the unexplored

condition of a given seed and then applies random mutation on the

corresponding byte offset. Meanwhile, we activate another source
fuzzing process to replace the original phantom fuzzing process.

Table 1 also presents the edge coverage results ofMirageFuzz𝑡𝑎𝑖𝑛𝑡 .
We can observe that MirageFuzz significantly outperforms Mirage-
Fuzz𝑡𝑎𝑖𝑛𝑡 by 23.94%.Moreover, we can also find that bothHavoc𝑀𝐴𝐵

and QSYM outperform MirageFuzz𝑡𝑎𝑖𝑛𝑡 by 0.02% and 9.27% respec-

tively. Such results suggest that phantom fuzzing is essential in

strengthening the effectiveness of MirageFuzz.

Finding 3: The phantom fuzzing is critical for MirageFuzz to
augment its edge coverage performance.

Effectiveness of taint-based mutation mechanism. We create a

technique variant MirageFuzz𝑠𝑝𝑙𝑖𝑐𝑒 which replaces the taint-based

mutation mechanism by randomly identifying a byte offset of a

given seed in the source fuzzing and splicing the given seed and a

randomly selected seed for the phantom fuzzing at the identified

byte offset to generate a mutant for the source fuzzing.
Table 1 also presents the edge coverage results ofMirageFuzz𝑠𝑝𝑙𝑖𝑐𝑒

where MirageFuzz outperforms MirageFuzz𝑠𝑝𝑙𝑖𝑐𝑒 by 19.62%. Such a

result clearly demonstrates that applying the taint-based mutation

mechanism can advance the effectiveness of the phantom fuzzing by
precisely positioning the byte offset associated with the unexplored

condition and providing the condition value to generate a mutant

which can be executed to facilitate the source fuzzing.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingyuan Wu, Kunqiu Chen, Qi Luo, Jiahong Xiang, Ji Qi, Junjie Chen, Heming Cui, and Yuqun Zhang

Table 1: Effectiveness ofMirageFuzz
Benchmark AFL AFL++ LafIntel FairFuzz MOPT Havoc𝑀𝐴𝐵 QSYM MEUZZ Angora MirageFuzz𝑡𝑎𝑖𝑛𝑡 MirageFuzz𝑠𝑝𝑙𝑖𝑐𝑒 MirageFuzz

readelf 4511 7137 5523 8839 11537 12841 11880 11883 13228 11742 12126 13611
nm 2657 3770 3205 4091 5134 5924 6548 5724 4471 5528 5389 7584
objdump 2843 3551 3471 5753 5780 6007 6314 N/A 5265 5923 6174 7735
objcopy 3240 3146 2856 4080 7456 7528 8167 N/A 9830 7379 8400 10473
size 2095 2185 2510 3447 3622 3651 4973 4206 5038 4011 3999 5469
jhead 161 177 199 161 165 169 784 804 176 753 767 858
pcre2 6027 6446 6510 6460 6209 6566 6277 6516 4082 6178 6555 6714
pngfix 1044 1043 1835 1033 1152 1045 1988 2093 1774 1761 1778 2195
strip 3022 3606 3104 4225 6970 6927 6725 N/A 9071 7027 7357 9417
listaction_d 3770 4118 4046 4164 4042 3831 4101 3889 3391 4097 3914 4194
libxml2 9657 9015 4468 8085 9559 9268 10346 N/A 7053 9019 8991 10992
libpng 863 861 2057 1060 1061 868 2021 N/A 1872 1873 2199 2313
re2 6911 6915 6874 6874 6855 6844 6837 N/A 6143 6460 6877 6892

swftocxx 4519 4544 4369 4378 4327 4413 4483 4545 4474 4359 4551 4675
jsoncpp 1010 1010 1002 1012 1010 1010 946 N/A 886 987 1001 1023
lcms2 888 1395 935 864 864 862 2631 N/A 1083 879 1035 2824
file 1268 1452 852 1414 1551 1480 1857 1861 1627 1493 1396 1970
libjpeg-turbo 4213 4193 4573 3281 4180 4623 4745 N/A 3797 4380 4658 4973
average 3261 3587 3244 3846 4526 4659 5090 4613 4626 4658 4826 5773
p-value 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 -

Figure 4: The edge exploration trends of all fuzzers

Finding 4: The taint-based mutation mechanism is essential
for MirageFuzz in facilitating its fuzzing efficacy.

We further investigate the taint-analysis time in our fuzzing

campaign (presented in our GitHub page [1] due to the page limit),

where it ranges from 1745 to 33589 seconds averagely during 24-

hour runs. Notably, even though it costs 33589 seconds for taint

analysis on project strip, MirageFuzz still achieves the best edge
coverage (i.e., covering 9417 edges) averagely in 24-hour run.

5.4 Bug Report and Analysis
In this paper, we obtain all the crashes and then manually iden-

tify the buggy location through stack tracing and analyze their

respectively causes. Accordingly, we derive unique bugs via debug-

ging. We then report our exposed bugs to the developers with the

essential information that can help them generate a patch. Over-

all, applying MirageFuzz exposes 29 previously unknown bugs

upon our benchmark suite where 7 were confirmed and 6 were

fixed by the corresponding developers. Meanwhile, AFL, AFL++

and MEUZZ detect 2 out-of-memory bugs in project swftocxx, and
AFL++, FairFuzz and QSYM expose 2 heap-buffer-overflow bugs in

Enhancing Coverage-Guided Fuzzing via Phantom Program ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

project listaction_d. Note that MirageFuzz can expose all the bugs

exposed by all other fuzzers. We illustrate all our bug types, e.g.,

a use-of-uninitialized-value bug refers to using a variable without

initialization, in our GitHub pages [1]. Table 2 presents the details
of the previous unknown bugs exposed by MirageFuzz.

Table 2: The bug information
Program Bug Type Number Status
pcre2 Infinite loop 1 confirmed and fixed
nm Infinite loop 1 reported
jhead Use-of-uninitialized-value 3 confirmed and fixed
strip Out-of-memory 1 confirmed and fixed

pngfix

Use-of-uninitialized-value 1 confirmed and fixed
Infinite loop 1 confirmed

listaction_d

Segmentation fault 6 reported
Heap-buffer-overflow 3 reported

swftocxx

Segmentation fault 5 reported
Heap-buffer-overflow 4 reported
Allocation-size-too-big 1 reported
Out-of-memory 2 reported

5.4.1 Infinite loop in pcre2test. We have reported a bug on project

pcre2 [10]—a set of C functions that implement regular expression

patternmatching using the same syntax and semantics as Perl 5 [12].

It was assigned with an issue ID 141 [11] and has been confirmed

and fixed by developers. This bug was exposed by running pcre2test,
one of the executable programs in project pcre2 with the specified

input files only generated by MirageFuzz.
While processing the input files, an infinite loop in function

pcre2test.c:process_data(void) occurred as shown in Figure 5.

1 int process_data(void)

2 {

3 // ...

4 // p is a section from input file, li is s64, i is s32, needlen and

dbuffer_size are u64.

5 li = strtol((const char *)p, &endptr, 10);

6 if (S32OVERFLOW(li)) { return OK; }

7 i = (int32_t)li;

8 if (i-- == 0) { return OK; }

9 // ...

10 replen = CAST8VAR(q) - start_rep;

11 needlen += replen * i;

12

13 if (needlen >= dbuffer_size)

14 {

15 // ...

16 while (needlen >= dbuffer_size)

17 dbuffer_size *= 2;

18 // ...

19 }

20 // ...

21 }

22

Figure 5: Infinite loop in pcre2test.

For the while condition needlen >= dbf_size and the loop

body dbf_size *= 2, we analyze that the value of needlen po-

tentially incurs infinite looping due to a possible integer overflow.

In fact, one of our input files sets i = -10, which in turn assigns

needlen with the value resulting in an infinite loop.

Correspondingly, the developers made a simple fix, i.e., patching

i– == 0 as i– <= 0. They commented on this bug as follows:

“A negative repeat value in a pcre2test subject line was not
being diagnosed, leading to infinite looping.”

5.4.2 Use-of-uninitialized-value in pngfix. We reported a use-of-

uninitialized-value bug in project libpng [8] only exposed by Mi-
rageFuzz under the instrumentation by MemorySantizer [67]. In

particular, the bug was exposed by running the generated seed from

pngfix, one of the executable programs in project libpng, confirmed

with the GitHub issue ID 424 [13] and fixed later.

The buggy code snippet is presented in Figure 6 where the unini-

tialized value reported by Memory sanitizer comes from png_ptr-
>big_row_buf and png_ptr->big_prev_row.

1 void png_read_start_row(png_structrp png_ptr)

2 {

3 // ...

4 if (png_ptr->interlaced != 0)

5 png_ptr->big_row_buf = (png_bytep)

6 png_calloc(png_ptr,row_bytes+48);

7 else

8 png_ptr->big_row_buf = (png_bytep)

9 png_malloc(png_ptr,row_bytes+48);

10 png_ptr->big_prev_row = (png_bytep)

11 png_malloc(png_ptr,row_bytes+48);

12 // ...

13 }

14

Figure 6: Use-of-uninitialized-value in pngfix.

The developers believed that this problem was caused by lacking

the memory initialization before using the memory requested by

malloc and then fixed the bug by invoking memset in the end of

the code snippet in Figure 6 with the following feedback:

“In my opinion it is due to the fact that png_malloc just calls
malloc but doesn’t initialize the memory. I can work on that
and improve it. It would really help to avoid similar issues in
the future. ”

5.4.3 Use-of-uninitialized-value in jhead. We reportedmultiple use-

of-uninitialized-value bugs of project jhead. These bugs, reported
in a GitHub issue (ID 53) [6], were confirmed and fixed.

The relevant buggy code snippet in function ReadJpegSections
is shown in Figure 7, where Data is a pointer to an allocated heap

memory segment by invoking malloc. However, such a memory

segment is not initialized before Data is used in the subsequent

procedure, and thus leads to a vulnerability.

1 int ReadJpegSections (FILE * infile, ReadMode_t ReadMode)

2 {

3 // ...

4 uchar * Data;

5 // ...

6 Data = (uchar *)malloc(itemlen+20);

7 if (Data == NULL){

8 ErrFatal("Could not allocate memory");

9 }

10 Sections[SectionsRead].Data = Data;

11 // ...

12 }

13

Figure 7: Use-of-uninitialized-value in jhead.

Eventually, the developer generated a patch by invoking memset
to initialize the value of the related memory after it is allocated.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingyuan Wu, Kunqiu Chen, Qi Luo, Jiahong Xiang, Ji Qi, Junjie Chen, Heming Cui, and Yuqun Zhang

“Or at least that should fix it. ..., but I could see how this could
be triggered.”

5.4.4 Out-of-memory in strip. Wehave reported one out-of-memory

bug as a bugzilla issue with ID 29495 [14] when executing project

strip, which was confirmed and fixed by the associated developers.

The function exif.c:rewrite_elf_program_header in Figure 8
reveals the relevant buggy code snippet. By using the input gen-

erated by our approach, the execution on strip keeps consuming

memory and causes an out-of-memory bug. In our evaluation, strip
consumes 64 GiB memory in our server in about two minutes.

Similar to malloc, we found that bfd_zalloc is a function that

allocates memory in the heap, located in the loop in line 18. The loop

only terminates by updating isec surrounded by a conditional code
region (lines 8 to 12). Therefore, an out-of-memory bug is triggered

if strip fails to enter such code region, i.e., the condition of such a

code region cannot be satisfied.

1 static bool rewrite_elf_program_header

2 (bfd *ibfd, bfd *obfd, bfd_vma maxpagesize)

3 {

4 // ...

5 isec = 0;

6 do {

7 // ...

8 if (IS_CONTAINED_BY_LMA(output_section, segment, map->p_paddr, opb)

||

9 IS_COREFILE_NOTE(segment, section)) {

10 // ...

11 ++isec;

12 }

13

14 // ...

15 if (isec < section_count) {

16 // ...

17 // bfd_zalloc allocates memory.

18 map = (struct elf_segment_map *) bfd_zalloc(obfd, amt);

19 // ...

20 }

21 continue;

22 } while (isec < section_count);

23 // ...

24 }

25

Figure 8: Out-of-memory in strip.

The developers fixed this bug by refactoring the whole function

to avoid memory overflow. They also commented the bug as follows:

“It’s important that the later tests not be more restrictive. If
they are it can lead to the situation triggered by the testcases,
where a section seemingly didn’t fit and thus needed a new
mapping. It didn’t fit the newmapping either, and this repeated
until memory exhausted.”

6 THREATS TO VALIDITY
Threats to internal validity. The threat to internal validity lies

in the implementation of our approach. To reduce this threat, we

reused the source code of the original AFL [78] to construct our ba-

sic fuzzing framework when implementingMirageFuzz. Meanwhile,

to implement the taint-based mutation mechanism, we also reuse

the existing libraries for taint analysis. Moreover, the first three

authors manually reviewed MirageFuzz code carefully to ensure its

correctness and consistency.

Threats to external validity. The threat to external validity

mainly lies in the benchmarks and the baselines used. To reduce

this threat, we adopt 18 projects widely used for the evaluations

in many popular fuzzers published recently [23, 23, 24, 47, 62, 72].

Furthermore, we also select nine popular baseline fuzzers, including

six traditional coverage-guided fuzzers [7, 28, 42, 47, 72, 78] and

three constraint-solving-based fuzzers [23, 25, 77] to evaluate the

effectiveness of MirageFuzz.
Threats to construct validity. The threat to construct validity

mainly lies in the metrics used. To reduce this threat, we deter-

mine to follow many prior work [23, 24, 61, 62] by using the edge

coverage to represent code coverage. Furthermore, we present the

crashes exposed by all studied fuzzers to demonstrate the advan-

tages of MirageFuzz. Notably, MirageFuzz can incur quite strong

performance gain under both metrics compared with other fuzzers.

7 RELATEDWORK
7.1 Fuzzing
Among all the coverage-guided fuzzers [15, 35, 62, 72–74], AFL [78]

is a widely-used baseline by retaining the mutants which can be

executed to increase code coverage as seeds for further iterative

executions. Many fuzzers are implemented upon AFL. Li et al. [43]

proposed Steelix to explore new coverage efficiently by observing

more runtime states. Lemieux et al. [42] introduced the concept of

rare branches and facilitated the fuzzing efficacy by focusing on rare

branches. In order to improve the fuzzing effectiveness, researchers

also attempt to integrate dynamic analysis techniques such as taint

analysis with fuzzing, e.g., AFL++ [28]. Rawat et al. [58] proposed

VUzzer to identify the input format of the target program via taint

analysis, for avoiding early termination in fuzzing. Liang et al. [45]

proposed PATA, a more advanced taint analysis technique that can

identify the loop variables efficiently during fuzzing. Du et al. [27]

proposed WindRanger, which leverages the power of deviation ba-

sic blocks to facilitate directed grey-box fuzzing. Furthermore, many

researchers also propose seed scheduling techniques for improving

fuzzing effectiveness. Böhme et al. [18] proposed AFLFast to sched-

ule seeds during fuzzing via a Markov chain model to improve

the performance of AFL. She et al. [63] introduced K-scheduler,

which schedules seeds according to the reachable edges and po-

tential coverage gain. Zhang et al. [80] utilized path constraint as

the guidance function to schedule the seeds for harvesting new

edges. Zhang et al. [79] proposed MobFuzz, which models fuzzing

as a multi-objective problem via a multi-armed bandit and then

schedules the seeds based on a particular optimization goal de-

rived from the chosen objective combination. Meanwhile, Chen et

al. [25] proposed MEUZZ to schedule the seeds in hybrid fuzzing

based on the knowledge learned from past seed scheduling de-

cisions made on the same or similar programs. Researchers also

adopt constraint solvers to explore deep program states. Cadar

et al. [19] proposed the fundamental symbolic execution engine

Klee for aiding the fuzzers in solving the program constraints dur-

ing fuzzing via symbolic execution. Accordingly, Yun et al. [77]

introduced QSYM to combine a concolic executor for solving com-

plicated program constraints in a selected coverage-guided fuzzer

Enhancing Coverage-Guided Fuzzing via Phantom Program ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

to leverage the power of symbolic execution in fuzzing. Kukucka et

al. [39] proposed CONFETTI to combine taint analysis and concolic

execution to fuzz Java programs. To solve the constraints more

efficiently, Chen et al. [22] proposed JIGSAW to evaluate the gen-

erated seeds with constraints on a native function produced by

Just-in-time compilation. Instead of adopting the SMT-solver as

other constraint-solving-based fuzzers, Chen et al. [23] proposed

Angora to solve program constraints by a gradient descent algo-

rithm. In addition, Fuzzing is utilized to detect vulnerabilities in

specific domains. Shen et al. [64] proposed Drifuzz to fuzz WiFi and

Ethernet drivers with concolic executor. Garbelini et al. [30] pro-

posed BrakTooth to fuzz arbitrary Bluetooth Classic (BT) devices

via constructing a protocol state machine. Shou et al. [65] proposed

Corbfuzz to fuzz the security policies of browsers by tracking the

runtime behaviors of the browsers. Gao et al. [29] incorporated

code representation learning and clustering to guide the process of

program-synthesis-based JVM fuzzing (such as JavaTailor [82]).

Many existing fuzzers [17, 61, 75, 81, 83] focus on scheduling

promising seeds, adopting dynamic analysis techniques or utilizing

an additional constraint solver to enhance code coverage. In this

paper, we propose MirageFuzz to enhance the exploration capacity

of each seed by reducing the program dependencies for conditional

statements to reduce the difficulties of accessing their program

states.

7.2 Program Transformation
Researchers adopt program transformation for multiple purposes.

Bacon et al. [16] proposed multiple ways to optimize programs

via transformation in the compiler. Wu et al. [76] proposed AuCS,

which utilized the power of program transformation to fix syn-

chronization issues for CUDA programs. Korel et al. [38] utilized

program transformation to find program inputs on which a selected

element, e.g., a target statement, is executed. Harman et al. [32]

generated new tests to improve the performance of search-based

testing techniques via program transformation. Chen et al. [21]

adopted semantics-preserving program transformation to facili-

tate the efficacy of symbolic execution. Program transformation

is also a common practice for fuzzing. Peng et al. [56] proposed

T-Fuzz, which combines symbolic execution and program trans-

formation to explore deep execution paths of the target program.

Liu et al. [46] proposed InstruGuard, which detects and fixes the

errors generated by transforming the target program for obtain-

ing coverage information via static analysis on target binaries and

rewriting transformation rules. Wang et al. [69] introduced RIFF

to reduce the fuzzing overhead generated by program coverage

measurement transformation via static program analysis. Menen-

dez et al. [49] proposed HashFuzz which utilizes hash functions for

semantics-preserving program transformation to target programs

for generating more diverse inputs. Dinesh et al. [26] proposed

RetroWrite, which utilizes static analysis to transform target pro-

grams to reduce the performance overhead incurred by sanitizers in

fuzzing. Nagy et al. [52] introduced a new program transformation

rule to eliminate the needless coverage tracing for coverage-guided

fuzzers. Hsu et al. [34] proposed a lightweight program transfor-

mation strategy to reduce the fuzzing overhead incurred by tracing

the coverage information.

Mutation testing [54, 68] is a type of software testing in which

certain statements of the source code are changed/mutated to check

if the test cases are able to find errors in the source code. In muta-

tion testing, test cases are expected to reject mutant (i.e., mutated

program) by causing the behavior of the original program to differ

from the mutant. Specifically, Papadakis et al. [55] and Chekam et

al. [20] have studied the fault revelation ability of mutation testing

and found that the higher mutation scores are, the stronger the fault

revelation ability of mutation testing is. While mutation testing

is typically adopted for evaluating the quality of test suites, the

adopted program transformation from mutation testing enlightens

researchers on facilitating the fuzzing efficacy. Groce et al. [31] has

shown that fuzzing the mutants of the target program can allow a

fuzzer to explore more behaviors than spending the entire fuzzing

budget on the original target. Qian et al. [57] utilized mutation

scores as additional feedback to guide fuzzing for bug detection.

While many fuzzers adopt program transformation for reducing

runtime overhead, we leverage the power of program transforma-

tion to create a phantom program for enhancing the exploration

capacity of all seeds.

8 CONCLUSION
In this paper, we propose the concept of phantom program, which

is built to mitigate the over-compliance of program dependencies

to enhance the exploration capacity of all seeds. Accordingly, we

build a coverage-guided fuzzer namelyMirageFuzz which performs

dual fuzzing for the original program and the phantom program

simultaneously and adopts the taint-based mutation mechanism to

generate new mutants by combining the resulting seeds from dual

fuzzing via taint analysis. To evaluate the effectiveness of Mirage-
Fuzz, we select 18 frequently used projects to form our benchmark

suite and nine popular open source fuzzers to form our baseline

fuzzers. The evaluation results show that MirageFuzz outperforms

the baseline fuzzers from 13.42% to 77.96% in terms of edge coverage

averagely in our benchmark.MirageFuzz also exposes 29 previously
unknown unique bugs where 7 of them have been confirmed and 6

have been fixed by the corresponding developers.

9 DATA AVAILABILITY
The source code of the MirageFuzz implementation is available in

our GitHub page [4]. All evaluation details and bug reports are also

presented in the GitHub page [1].

ACKNOWLEGEMENT
This work is partially supported by Guangdong Provincial Key Lab-

oratory (Grant No. 2020B121201001) and National Natural Science

Foundation of China Grant Nos. 62002256, 62232001. This work is

also partially supported by Kuaishou.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Mingyuan Wu, Kunqiu Chen, Qi Luo, Jiahong Xiang, Ji Qi, Junjie Chen, Heming Cui, and Yuqun Zhang

REFERENCES
[1] 2022. All experiments detail in the paper. https://github.com/WorldExecute/

exprs.

[2] 2022. Control-flow graph generating pass of LLVM. https://llvm.org/docs/Passes.

html#dot-cfg-print-cfg-of-function-to-dot-file.

[3] 2022. Dominator and Immediate dominator, WiKipedia. https://en.wikipedia.

org/wiki/Dominator_(graph_theory).

[4] 2022. Github Repository. 2022. MirageFuzz. https://github.com/WorldExecute/

fuzzer.

[5] 2022. jhead: a simple command line tool for displaying and some manipu-

lation of EXIF header data embedded in Jpeg images from digital cameras.

https://github.com/Matthias-Wandel/jhead.

[6] 2022. jhead use-of-uninitialized-value bug issue. https://github.com/Matthias-

Wandel/jhead/issues/53.

[7] 2022. laf-intel instrumentation. https://github.com/AFLplusplus/AFLplusplus/

blob/stable/instrumentation/README.laf-intel.md.

[8] 2022. libpng - library for use in applications that read, create, and manipulate

PNG. https://github.com/glennrp/libpng.

[9] 2022. Memory SSA in LLVM. https://llvm.org/docs/MemorySSA.html.

[10] 2022. PCRE2 - Perl-Compatible Regular Expressions. https://github.com/

PCRE2Project/pcre2.

[11] 2022. pcre2 infinite loop bug issue. https://github.com/PCRE2Project/pcre2/

issues/141.

[12] 2022. Perl - a highly capable, feature-rich programming language. https:

//www.perl.org/.

[13] 2022. pngfix use-of-uninitialized-value bug issue. https://github.com/glennrp/

libpng/issues/424.

[14] 2022. strip out-of-memory bug issue. https://sourceware.org/bugzilla/show_bug.

cgi?id=29495.

[15] 2023. LibFuzzer – a library for coverage-guided fuzz testing. https://llvm.org/

docs/LibFuzzer.html.

[16] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler Transfor-

mations for High-Performance Computing. ACM Comput. Surv. 26, 4 (dec 1994),
345–420. https://doi.org/10.1145/197405.197406

[17] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-

hury. 2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 2329–2344.

[18] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-

Based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’16). As-
sociation for Computing Machinery, New York, NY, USA, 1032–1043. https:

//doi.org/10.1145/2976749.2978428

[19] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted

and automatic generation of high-coverage tests for complex systems programs..

In OSDI, Vol. 8. 209–224.
[20] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman.

2017. An Empirical Study on Mutation, Statement and Branch Coverage Fault

Revelation That Avoids the Unreliable Clean Program Assumption. In Proceedings
of the 39th International Conference on Software Engineering (ICSE ’17). IEEE Press,

597–608. https://doi.org/10.1109/ICSE.2017.61

[21] Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khurshid, and Lu

Zhang. 2018. Learning to accelerate symbolic execution via code transformation.

In 32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[22] Ju Chen, Jinghan Wang, Chengyu Song, and Heng Yin. 2022. JIGSAW: Efficient

and Scalable Path Constraints Fuzzing. In 2022 IEEE Symposium on Security and
Privacy (SP). 18–35. https://doi.org/10.1109/SP46214.2022.9833796

[23] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.

In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.
[24] Peng Chen, Jianzhong Liu, and Hao Chen. 2019. Matryoshka: fuzzing deeply

nested branches. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 499–513.

[25] Yaohui Chen, Mansour Ahmadi, Boyu Wang, Long Lu, et al. 2020. {MEUZZ}:
Smart Seed Scheduling for Hybrid Fuzzing. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020). 77–92.

[26] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.

RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.

In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020. IEEE, 1497–1511. https://doi.org/10.1109/SP40000.2020.00009

[27] Zhengjie Du, Yuekang Li, Yang Liu, Bing Mao, Ligeng Chen, Jian Guo, Zhongling

He, Dongliang Mu, C Pang, R Yu, et al. 2022. WindRanger: A Directed Greybox

Fuzzer driven by Deviation Basic Blocks. In 2022 IEEE/ACM 44st International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion).

[28] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:

Combining incremental steps of fuzzing research. In 14th {USENIX} Workshop
on Offensive Technologies ({WOOT} 20).

[29] Tianchang Gao, Junjie Chen, Yingquan Zhao, Yuqun Zhang, and Lingming Zhang.

2023. Vectorizing Program Ingredients for Better JVM Testing. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis.
526–537.

[30] Matheus E Garbelini, Vaibhav Bedi, Sudipta Chattopadhyay, Sumei Sun, and

Ernest Kurniawan. 2022. {BrakTooth}: Causing Havoc on Bluetooth Link Man-

ager via Directed Fuzzing. In 31st USENIX Security Symposium (USENIX Security
22). 1025–1042.

[31] Alex Groce, Goutamkumar Tulajappa Kalburgi, Claire Le Goues, Kush Jain, and

Rahul Gopinath. 2022. Registered report: First, fuzz the mutants. In International
Fuzzing Workshop, ser. FUZZING, Vol. 22.

[32] Mark Harman, André Baresel, David Binkley, Robert Hierons, Lin Hu, Bogdan

Korel, Phil McMinn, and Marc Roper. 2008. Testability transformation–program

transformation to improve testability. In Formal methods and testing. Springer,
320–344.

[33] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,

and Antony L. Hosking. 2021. Seed Selection for Successful Fuzzing. In Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2021). Association for Computing Machinery, New York, NY,

USA, 230–243. https://doi.org/10.1145/3460319.3464795

[34] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun Huang. 2018. In-

strim: Lightweight instrumentation for coverage-guided fuzzing. In Symposium
on Network and Distributed System Security (NDSS), Workshop on Binary Analysis
Research.

[35] Ling Jiang, Hengchen Yuan, Mingyuan Wu, Lingming Zhang, and Yuqun Zhang.

2023. Evaluating and Improving Hybrid Fuzzing. In 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE). 410–422. https://doi.org/10.

1109/ICSE48619.2023.00045

[36] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D

Keromytis. 2012. libdft: Practical dynamic data flow tracking for commodity

systems. In Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments. 121–132.

[37] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2123–2138.

[38] B. Korel, M. Harman, S. Chung, P. Apirukvorapinit, R. Gupta, and Q. Zhang.

2005. Data dependence based testability transformation in automated test gener-

ation. In 16th IEEE International Symposium on Software Reliability Engineering
(ISSRE’05). 10 pp.–254. https://doi.org/10.1109/ISSRE.2005.16

[39] James Kukucka, Lux00ED;s Pina, Paul Ammann, and Jonathan Bell. 2022. CON-

FETTI: Amplifying Concolic Guidance for Fuzzers. In 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering (ICSE). 438–450. https://doi.org/10.

1145/3510003.3510628

[40] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In

The BSD conference, Vol. 5. 1–20.
[41] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for

lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[42] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy

for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 475–485.

[43] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,

and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. 627–637.

[44] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.

Fuzzing: State of the art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.

[45] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang, Jianzhong Liu,

Zhe Liu, and Jiaguang Sun. 2022. PATA: Fuzzing with Path Aware Taint

Analysis. In 2022 IEEE Symposium on Security and Privacy (SP). 1–17. https:

//doi.org/10.1109/SP46214.2022.9833594

[46] Yuwei Liu, Yanhao Wang, Purui Su, Yuanping Yu, and Xiangkun Jia. 2021. In-

struGuard: Find and Fix Instrumentation Errors for Coverage-based Greybox

Fuzzing. In 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 568–580. https://doi.org/10.1109/ASE51524.2021.9678671

[47] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and

Raheem Beyah. 2019. {MOPT}: Optimized mutation scheduling for fuzzers. In

28th {USENIX} Security Symposium ({USENIX} Security 19). 1949–1966.
[48] Thomas W MacFarland and Jan M Yates. 2016. Mann–whitney u test. In Intro-

duction to nonparametric statistics for the biological sciences using R. Springer,
103–132.

[49] Hector D. Menendez and David Clark. 2021. Hashing Fuzzing: Introducing Input

Diversity to Improve Crash Detection. IEEE Transactions on Software Engineering
(2021), 1–1. https://doi.org/10.1109/TSE.2021.3100858

[50] JonathanMetzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek

Arya. 2021. Fuzzbench: an open fuzzer benchmarking platform and service. In

Proceedings of the 29th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering. 1393–1403.

https://github.com/WorldExecute/exprs
https://github.com/WorldExecute/exprs
https://llvm.org/docs/Passes.html##dot-cfg-print-cfg-of-function-to-dot-file
https://llvm.org/docs/Passes.html##dot-cfg-print-cfg-of-function-to-dot-file
https://en.wikipedia.org/wiki/Dominator_(graph_theory)
https://en.wikipedia.org/wiki/Dominator_(graph_theory)
https://github.com/WorldExecute/fuzzer
https://github.com/WorldExecute/fuzzer
https://github.com/Matthias-Wandel/jhead
https://github.com/Matthias-Wandel/jhead/issues/53
https://github.com/Matthias-Wandel/jhead/issues/53
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.laf-intel.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.laf-intel.md
https://github.com/glennrp/libpng
https://llvm.org/docs/MemorySSA.html
https://github.com/PCRE2Project/pcre2
https://github.com/PCRE2Project/pcre2
https://github.com/PCRE2Project/pcre2/issues/141
https://github.com/PCRE2Project/pcre2/issues/141
https://www.perl.org/
https://www.perl.org/
https://github.com/glennrp/libpng/issues/424
https://github.com/glennrp/libpng/issues/424
https://sourceware.org/bugzilla/show_bug.cgi?id=29495
https://sourceware.org/bugzilla/show_bug.cgi?id=29495
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/ICSE.2017.61
https://doi.org/10.1109/SP46214.2022.9833796
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1109/ICSE48619.2023.00045
https://doi.org/10.1109/ICSE48619.2023.00045
https://doi.org/10.1109/ISSRE.2005.16
https://doi.org/10.1145/3510003.3510628
https://doi.org/10.1145/3510003.3510628
https://doi.org/10.1109/SP46214.2022.9833594
https://doi.org/10.1109/SP46214.2022.9833594
https://doi.org/10.1109/ASE51524.2021.9678671
https://doi.org/10.1109/TSE.2021.3100858

Enhancing Coverage-Guided Fuzzing via Phantom Program ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[51] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[52] Stefan Nagy and Matthew Hicks. 2019. Full-Speed Fuzzing: Reducing Fuzzing

Overhead through Coverage-Guided Tracing. In 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 787–802.
https://doi.org/10.1109/SP.2019.00069

[53] Diego Novillo et al. 2007. Memory SSA-a unified approach for sparsely represent-

ing memory operations. In Proceedings of the GCC Developers’ Summit. Citeseer,
97–110.

[54] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark

Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. Elsevier, 275–378.

[55] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are mu-

tation scores correlated with real fault detection? a large scale empirical study

on the relationship between mutants and real faults. In Proceedings of the 40th
International Conference on Software Engineering. 537–548.

[56] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by

Program Transformation. In 2018 IEEE Symposium on Security and Privacy (SP).
697–710. https://doi.org/10.1109/SP.2018.00056

[57] Ruixiang Qian, Quanjun Zhang, Chunrong Fang, and Lihua Guo. 2022. Inves-

tigating Coverage Guided Fuzzing with Mutation Testing. In Proceedings of the
13th Asia-Pacific Symposium on Internetware (Internetware ’22). Association for

Computing Machinery, New York, NY, USA, 272–281. https://doi.org/10.1145/

3545258.3545285

[58] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In

24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet Soci-

ety. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-

application-aware-evolutionary-fuzzing/

[59] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1988. Global value

numbers and redundant computations. In Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 12–27.

[60] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You

Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic

Execution (but Might Have Been Afraid to Ask). In 2010 IEEE Symposium on
Security and Privacy. 317–331. https://doi.org/10.1109/SP.2010.26

[61] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. 2020.

MTFuzz: fuzzing with a multi-task neural network. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 737–749.

[62] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman

Jana. 2019. Neuzz: Efficient fuzzing with neural program smoothing. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 803–817.

[63] Dongdong She, Abhishek Shah, and Suman Jana. 2022. Effective Seed Scheduling

for Fuzzing with Graph Centrality Analysis. In 2022 IEEE Symposium on Security
and Privacy (SP). 2194–2211. https://doi.org/10.1109/SP46214.2022.9833761

[64] Zekun Shen, Ritik Roongta, and Brendan Dolan-Gavitt. 2022. Drifuzz: Harvesting

Bugs in Device Drivers from Golden Seeds. In 31st USENIX Security Symposium
(USENIX Security 22). 1275–1290.

[65] Chaofan Shou, Ismet Burak Kadron, Qi Su, and Tevfik Bultan. 2021. Corbfuzz:

Checking browser security policies with fuzzing. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE, 215–226.

[66] Abraham Silberschatz, Peter B Galvin, and Greg Gagne. 2018. Operating System
Concepts, 10e Abridged Print Companion. John Wiley & Sons.

[67] Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast

detector of uninitialized memory use in C++. In 2015 IEEE/ACM International

Symposium on Code Generation and Optimization (CGO). IEEE, 46–55.
[68] Zhao Tian, Junjie Chen, Qihao Zhu, Junjie Yang, and Lingming Zhang. 2022.

Learning to construct better mutation faults. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1–13.

[69] Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Chengnian Sun,

and Jiaguang Sun. 2021. {RIFF}: Reduced Instruction Footprint for {Coverage-
Guided} Fuzzing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
147–159.

[70] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu,

and Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by

Coverage Accounting for Input Prioritization.. In NDSS.
[71] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4

(1984), 352–357.

[72] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming

Zhang, and Yuqun Zhang. 2022. One Fuzzing Strategy to Rule Them All. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE).

[73] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yuqun Zhang, Guowei Yang, Huixin

Ma, Sen Nie, Shi Wu, Heming Cui, and Lingming Zhang. 2022. Evaluating

and Improving Neural Program-Smoothing-based Fuzzing. In 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE). 847–858. https:

//doi.org/10.1145/3510003.3510089

[74] Mingyuan Wu, Minghai Lu, Heming Cui, Junjie Chen, Yuqun Zhang, and Ling-

ming Zhang. 2023. JITfuzz: Coverage-guided Fuzzing for JVM Just-in-Time

Compilers. In 2023 IEEE/ACM 45th International Conference on Software Engineer-
ing (ICSE). 56–68. https://doi.org/10.1109/ICSE48619.2023.00017

[75] Mingyuan Wu, Yicheng Ouyang, Minghai Lu, Junjie Chen, Yingquan Zhao, Hem-

ing Cui, Yangwei Guo, and Yuqun Zhang. 2023. SJFuzz: Seed & Mutator Sched-

uling for JVM Fuzzing. In 2023 The ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).

[76] Mingyuan Wu, Lingming Zhang, Cong Liu, Shin Hwei Tan, and Yuqun Zhang.

2019. Automating CUDA synchronization via program transformation. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 748–759.

[77] Insu Yun, Sangho Lee,MengXu, Yeongjin Jang, and Taesoo Kim. 2018. {QSYM}: A
practical concolic execution engine tailored for hybrid fuzzing. In 27th {USENIX}
Security Symposium ({USENIX} Security 18). 745–761.

[78] Michał Zalewski. 2020. American Fuzz Lop. https://github.com/google/AFL.

[79] G Zhang, P Wang, T Yue, X Kong, S Huang, X Zhou, and K Lu. 2022. Mob-

fuzz: Adaptive multi-objective optimization in gray-box fuzzing. In Network and
Distributed Systems Security (NDSS) Symposium 2022.

[80] Kunpeng Zhang, Xi Xiao, Xiaogang Zhu, Ruoxi Sun, Minhui Xue, and ShengWen.

2022. Path Transitions Tell More: Optimizing Fuzzing Schedules via Runtime

Program States. In 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE). 1658–1668. https://doi.org/10.1145/3510003.3510063

[81] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-

shid. 2018. DeepRoad: GAN-Based Metamorphic Testing and Input Valida-

tion Framework for Autonomous Driving Systems. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). 132–142.
https://doi.org/10.1145/3238147.3238187

[82] Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun

Zhang, and Lingming Zhang. 2022. History-driven test program synthesis for

JVM testing. In Proceedings of the 44th International Conference on Software Engi-
neering. 1133–1144.

[83] Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei Yu, Ling-

ming Zhang, and Cong Liu. 2020. DeepBillboard: Systematic Physical-World

Testing of Autonomous Driving Systems. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 347–358.

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.1109/SP.2018.00056
https://doi.org/10.1145/3545258.3545285
https://doi.org/10.1145/3545258.3545285
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP46214.2022.9833761
https://doi.org/10.1145/3510003.3510089
https://doi.org/10.1145/3510003.3510089
https://doi.org/10.1109/ICSE48619.2023.00017
https://github.com/google/AFL
https://doi.org/10.1145/3510003.3510063
https://doi.org/10.1145/3238147.3238187

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Dependency Reduction Mechanism
	3.2 Dual Fuzzing
	3.3 Taint-based Mutation Mechanism

	4 Implementation
	4.1 Instrumentation
	4.2 Dynamic Taint Analysis
	4.3 Crash Handling in Phantom Fuzzing

	5 Evaluation
	5.1 Baseline Fuzzers and Benchmark
	5.2 Environment Setup
	5.3 Result Analysis
	5.4 Bug Report and Analysis

	6 THREATS TO VALIDITY
	7 Related Work
	7.1 Fuzzing
	7.2 Program Transformation

	8 conclusion
	9 Data Availability
	References

