
One Fuzzing Strategy to Rule Them All
Mingyuan Wu†

Southern University of Science and

Technology, Shenzhen, China and the

University of Hong Kong, Hong Kong,

China

11849319@mail.sustech.edu.cn

Ling Jiang, Jiahong Xiang

Southern University of Science and

Technology

Shenzhen, China

11711906@mail.sustech.edu.cn

11812613@mail.sustech.edu.cn

Yanwei Huang

Zhejiang University

Hangzhou, China

huangyw@zju.edu.cn

Heming Cui

The University of Hong Kong

Hong Kong, China

heming@cs.hku.hk

Lingming Zhang

University of Illinois

Urbana-Champaign, USA

lingming@illinois.edu

Yuqun Zhang*

Southern University of Science and

Technology

Shenzhen, China

zhangyq@sustech.edu.cn

ABSTRACT
Coverage-guided fuzzing has become mainstream in fuzzing to

automatically expose program vulnerabilities. Recently, a group of

fuzzers are proposed to adopt a random search mechanism namely

Havoc, explicitly or implicitly, to augment their edge exploration.

However, they only tend to adopt the default setup of Havoc as an
implementation option while none of them attempts to explore its

power under diverse setups or inspect its rationale for potential

improvement. In this paper, to address such issues, we conduct

the first empirical study on Havoc to enhance the understanding

of its characteristics. Specifically, we first find that applying the

default setup of Havoc to fuzzers can significantly improve their

edge coverage performance. Interestingly, we further observe that

even simply executing Havoc itself without appending it to any

fuzzer can lead to strong edge coverage performance and outper-

form most of our studied fuzzers. Moreover, we also extend the

execution time of Havoc and find that most fuzzers can not only

achieve significantly higher edge coverage, but also tend to perform

similarly (i.e., their performance gaps get largely bridged). Inspired

by the findings, we further propose Havoc𝑀𝐴𝐵 , which models the

Havoc mutation strategy as a multi-armed bandit problem to be

solved by dynamically adjusting the mutation strategy. The evalua-

tion result presents that Havoc𝑀𝐴𝐵 can significantly increase the

edge coverage by 11.1% on average for all the benchmark projects

compared with Havoc and even slightly outperform state-of-the-art

QSYM which augments its computing resource by adopting three

parallel threads. We further execute Havoc𝑀𝐴𝐵 with three parallel

† Mingyuan Wu is also affiliated with the Research Institute of Trustworthy Au-

tonomous Systems, Shenzhen, China.

* Yuqun Zhang is the corresponding author. He is also affiliated with the Research

Institute of Trustworthy Autonomous Systems, Shenzhen, China and Guangdong

Provincial Key Laboratory of Brain-inspired Intelligent Computation, China.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00

https://doi.org/10.1145/3510003.3510174

threads and result in 9% higher average edge coverage over QSYM

upon all the benchmark projects.

ACM Reference Format:
Mingyuan Wu†, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui,

Lingming Zhang, and Yuqun Zhang*. 2022. One Fuzzing Strategy to Rule

ThemAll. In 44th International Conference on Software Engineering (ICSE ’22),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3510003.3510174

1 INTRODUCTION
Fuzzing (or fuzz testing) refers to an automated software testing

methodology that inputs invalid, unexpected, or random data to

programs for exposing unexpected program behaviors (such as

crashes, failing assertions, or memory leaks), which can be further

inspected or analyzed to detect potential vulnerabilities/bugs [43].

In particular, many existing fuzzers tend to facilitate their vulnera-

bility/bug exposure via optimizing code coverage of programs [7,

20, 33, 34, 52]. Given an initial collection of seeds, such coverage-
guided fuzzers usually develop strategies to iteratively mutate them

for generating new seeds that can trigger higher code coverage.

Notably, a number of recent coverage-guided fuzzers (e.g., AFL [52],

AFL++ [12], MOPT [25], QSYM [50], and FairFuzz [20]) integrate

a lightweight random search mechanism namely Havoc1 to their

respective fuzzing strategies for increasing their code coverage.

For instance, we observe that while the major fuzzing strategy of

FairFuzz can explore 12k+ program edges within around 21 hours,

its adopted Havoc can explore 7.8k+ program edges within only

around 3 hours. In contrast to many existing fuzzers which adopt

only one mutator under each iterative execution, Havoc randomly

selects multiple diverse mutators, e.g., flipping a single bit and in-

serting/deleting a randomly-chosen continuous chuck of bytes, and

applies them altogether for generating one seed during each itera-

tion. Typically, under each iteration, Havoc can be integrated with

fuzzers either sequentially, i.e., executing Havoc upon the seeds col-

lected after executing their major fuzzing strategies, or in parallel,

i.e., executing Havoc and their major fuzzing strategies at the same

time in different processes/threads upon their seed aggregation.

1
While such mechanism may have different names according to different fuzzing

papers, we adopt Havoc following AFL.

https://doi.org/10.1145/3510003.3510174
https://doi.org/10.1145/3510003.3510174

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mingyuan Wu†, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming Zhang, and Yuqun Zhang*

Although Havoc has been widely adopted by existing fuzzers,

they tend to include Havoc only as an implementation option with-

out further investigating its rationale or exploring its potentials.

For instance, AFL, AFL++ and FairFuzz simply adopt Havoc as an
additional mutation stage and QSYM utilizes Havoc to generate

seeds for its concolic execution to increase code coverage. That

said, they simply adopt Havoc under its default setup, i.e., none
of the prior work attempt to study the impact of different Havoc
settings, explore different ways to integrate Havoc, or further boost
the Havoc strategy itself.

In this paper, we conduct the first comprehensive study of Havoc
to unleash its potential. In particular, we first collect 7 recent bi-

nary fuzzers and the pure Havoc (i.e., applying Havoc only without

appending it to any fuzzer) as our studied subjects and construct a

benchmark by collecting their studied projects in common. Then,

we conduct an extensive study to investigate how enabling Havoc
in the studied subjects can impact their performance (e.g., code cov-

erage and bug exposure). Our evaluation results indicate that for

all the studied fuzzers, appending Havoc to them under its default

setup can significantly increase their edge coverage upon all the

benchmark projects from 43.9% to 3.7X on average. Meanwhile, we

also find that even directly applying the pure Havoc only can result

in surprisingly strong edge coverage and significantly outperform

most of our studied fuzzers. Moreover, while different fuzzers can

achieve quite divergent edge coverage results, applyingHavoc to the
studied fuzzers under sufficient execution time can in general not

only significantly increase their edge coverage compared with their

default Havoc integration, but also strongly reduce the performance

gap of their edge coverage when applying their original versions.

Lastly, Havoc can also help all the studied fuzzers expose more

unique crashes than their corresponding major fuzzing strategies.

Inspired by our findings, we propose an improved version of

Havoc namely Havoc𝑀𝐴𝐵 [32] which models the Havoc mutation

strategy as a multi-armed bandit problem (MAB) [45] to be further

solved by dynamically adjusting the mutation strategy. The eval-

uation results indicate that under 24-hour execution, Havoc𝑀𝐴𝐵

can outperform the pure Havoc significantly by 11.1% in terms of

edge coverage on all the benchmarks on average. Havoc𝑀𝐴𝐵 can

also slightly outperform state-of-the-art QSYM which augments

its computing resource by adopting three threads in parallel. More-

over, we also design Havoc3

𝑀𝐴𝐵
by executing Havoc𝑀𝐴𝐵 with three

threads in parallel. The evaluation result indicates that Havoc3

𝑀𝐴𝐵
can outperform state-of-the-art QSYM by 9% on average.

To summarize, this paper makes the following contributions:

• We extensively study the performance impact by applying

Havoc to a set of studied fuzzers on real-world benchmarks.

• We find that applying Havoc can substantially improve edge

coverage and crash detection for all the studied fuzzers.

• We propose a lightweight approach Havoc𝑀𝐴𝐵 based on our

findings which can boost the pure Havoc by 11.1% under

a 24-hour execution, and outperform all the other studied

fuzzers.

2 BACKGROUND
Havoc was first proposed in AFL [52] and later further adopted

by many other fuzzers [6, 7, 12, 20, 25]. While their adoptions of

Havoc can be slightly different, they typically integrate Havoc with
their major fuzzing strategies (i.e., the core fuzzing strategies) for

their iterative executions, i.e., under each iteration, Havoc repeat-
edly mutates each seed provided by (or aggregated to its own seed

collection from) executing the major fuzzing strategy via apply-

ing multiple randomly selected mutators simultaneously. Figure 1

presents the basic workflow of Havoc. For each seed in the seed

corpus, Havoc first determines the count of its mutations based on

the real-time seed information, e.g., queuing time of seeds and the

existing “interesting” seed number (i.e., the number of the seeds

which can explore new edges defined by AFL). Next, each time

when mutating a seed, Havoc implements mutator stacking, i.e.,

mutating it by randomly applying multiple mutators (e.g., 15 for

AFL, MOPT, etc.) in order from a set of mutators. Note that Havoc
usually enables a maximum size of such mutator stack (e.g., 128 for

AFL, MOPT, etc.) and one mutator can thus be selected multiple

times when mutating a given seed. If the generated mutant is “in-

teresting” (i.e., exploring new edges), it will be included as a seed

for further mutations. Havoc repeats such process until hitting the

mutation count. Accordingly, its fuzzer can resume the execution

of its major fuzzing strategy when needed.

Seed

Mutator StackingHavoc Mutation
Seed Corpus

 .C
Program

(llvm-instrument)

YES

Trigger New Edge?

Discard
NO Edge Coverage

MutantUnit-7 Unit-4 Unit-11

MutantUnit-1 Chunk-3 Unit-3

MutantChunk-4 Unit-10Chunk-1

Figure 1: The framework of Havoc

Table 1: Mutation operators defined by Havoc
Type Meaning Mutator

bitflip Flip a bit at a random

position.

bitflip 1

interesting
values

Set bytes with hard-coded

interesting values.

interest 8
interest 16
interest 32

arithmetic
increase Perform addition operations.

addition 8
addition 16
addition 32

arithmetic
decrease Perform subtraction operations.

decrease 8
decrease 16
decrease 32

random
value

Randomly set a byte to

a random value.

random byte

delete
bytes

Randomly delete

consecutive bytes.

delete chunk bytes

clone/insert
bytes

Clone bytes in 75%, otherwise

insert a block of constant bytes.

clone/insert
chunk bytes

overwrite
bytes

Randomly overwrite the

selected consecutive bytes.

overwrite
chunk bytes

One Fuzzing Strategy to Rule Them All ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

2.1 Mutators and Mutator Stacking
Table 1 presents the details of Havoc mutators. Note that in the

“mutator” column, the number followed by the mutator name refers

to the bit-wise mutation range. For instance, bitflip 1 refers to
flipping one random bit at a random position. To our best knowl-

edge, most fuzzers [6, 7, 12, 25, 50, 52] enable a total of 15 mutators

for Havoc. In this paper, we categorize them into two dimensions:

unit mutators (labeled in red in Table 1) and chunk mutators (labeled
in blue). In general, unit mutators refer to mutating the units of data

storage in programs, e.g., bit/byte/word. For example, applying the

bitflip mutator in Table 1 can flip a bit, i.e., switching between 0

and 1. Meanwhile, chunk mutators tend to mutate a seed in terms

of its randomly chosen chunk. For instance, the delete bytes
mutator in Table 1 first randomly selects a chunk of bytes in the

seed and then deletes them altogether.

While many fuzzers [15, 24, 31, 33, 34] mainly apply one mutator

to a seed each time, Havoc enables mutator stacking to stack and

apply multiple mutators on a seed to generate one mutant each

time. Typically, Havoc first defines a stacking size for the applied
mutators which is usually randomly determined by the power of

two till 128, i.e., 2, 4, 8,...128, for each mutation. Accordingly, Havoc
can randomly select mutators into the stack where one mutator

can be possibly selected multiple times. Eventually, all the stacked

mutators are applied to the seed in order to generate a mutant. Note

that while most fuzzers uniformly select mutators for their Havoc,
MOPT and AFL++ adopt a probability distribution generated by

Particle Swarm Optimization [18] for Havoc to select mutators.

2.2 Integration
Havoc can be typically integrated with fuzzers in two manners.

One is the sequential manner, i.e., appending Havoc as a later muta-

tion stage to their major fuzzing strategies. For instance, AFL [52]

launches Havoc upon the seeds generated after applying its de-

terministic mutation strategy to generate more seeds under each

iterative execution. The other is the parallel manner, i.e., applying

Havoc and the major fuzzing strategy of a fuzzer in parallel. For

instance, QSYM [50] enables three threads which execute Havoc,
AFL deterministic mutation strategy, and concolic execution [14]

respectively; more specifically, the first two threads are indepen-

dently executed in parallel and their respective generated seeds are

continuously aggregated to be used for the concolic execution.

While Havoc has been widely adopted by the aforementioned

fuzzers, it is simply utlized as an implementation option while

none of the fuzzers has explicitly explored its potential power,

e.g., assessing its mechanism and adjusting its setup. Therefore,

our paper attempts to explicitly investigate Havoc, i.e., extensively
assessing its performance impact to fuzzers and its mechanisms,

for better leveraging its power and providing practical guidelines

for future research.

3 HAVOC IMPACT STUDY
3.1 Subjects & Benchmarks
3.1.1 Subjects. In general, we determine to adopt the following

types of fuzzers as our study subjects. First, we attempt to include

the fuzzers which originally adopt Havoc to expose how Havoc

can impact their performance by default. Next, we also attempt to

explore the fuzzers which do not originally adopt Havoc but can
possibly integrate Havoc under appropriate effort. Accordingly, we
can investigate whether and how Havoc can be effective in a wider

range of fuzzers. At last, we also include the pure Havoc, i.e., using
only one seed to launch Havoc for generating new seeds without

appending it to any fuzzer, for analyzing how the power of Havoc
can be unleashed.

Note that while there are many existing fuzzers which can meet

our selection criteria above, we also need to filter them for selecting

the representative ones. To this end, we first determine to limit

our search scope within the fuzzers published in the top software

engineering and security conferences, i.e., ICSE, FSE, ASE, ISSTA,

CCS, S&P, USENIX Security, and NDSS, of recent years. Further-

more, we can only evaluate the fuzzers when their source code are

fully available and can be successfully executed. At last, it is rather

challenging to integrate Havoc with certain potential fuzzers due to

the engineering-/concept-wise challenges. Therefore in this paper,

we only target AFL variants due to the appropriate workloads for

implementing Havoc for them.

Eventually, we select 8 representative fuzzers as our studied

subjects, including 5 fuzzers with Havoc (AFL [52], AFL++ [12],

MOPT [25], FairFuzz [20], QSYM [50]), 2 fuzzers without Havoc
(Neuzz [34], MTFuzz [33]) and the pure Havoc itself. Note that

such subjects can be rather representative in terms of technical

designs, i.e., including AFL-based, concolic-execution-based, and

neural program-smoothing-based fuzzers.

3.1.2 Benchmark programs. We construct our benchmark based on

the projects commonly adopted by the original papers of our studied

fuzzers [20, 25, 33, 34, 50]. In particular, we select 12 frequently used

projects out of the papers to form our benchmark for evaluation.

More specifically, we first select all 6 projects that are adopted by at

least 3 papers; then, we further randomly select another 6 projects

which are adopted by one or two papers. The selection details are

presented in our Github page [32]. Table 2 presents the statistics of

our adopted benchmarks. Specifically, we consider our benchmark

to be sufficient and representative due to following reasons:

(1) These 12 benchmark projects cover 7 different file formats

for seed inputs, e.g., ELF, JPEG, and TIFF;
(2) The sizes of these programs that range from 1,885 to over

120K LoC can represent a wide range of programs in practice;

(3) They cover diverse functions including development tools

(e.g., readelf, objdump), code processing tools (e.g., tiff2bw),

graphics processing tools (e.g., djpeg), network analysis tools

(e.g., tcpdump), etc.

3.2 Evaluation Setups
Our evaluations are performed on ESC servers with 128-core 2.6

GHz AMD EPYC™ ROME 7H12 CPUs and 256 GiB RAM. The

servers run on Linux 4.15.0-147-generic Ubuntu 18.04. The evalu-

ations that involve deep learning model training (i.e., Neuzz and

MTFuzz) are executed with four RTX 2080ti GPUs.

We strictly follow the respective original procedures of the

studied fuzzers to execute them. Specifically, we set the overall

execution time budget for each fuzzer 24 hours following prior

works [6, 7, 19, 20, 33, 34]. Note that we run each experiment five

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mingyuan Wu†, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming Zhang, and Yuqun Zhang*

Table 2: Statistics of the studied benchmarks
Programs LOC

Package Target Class

readelf ELF 72,164

nm ELF 55,307

binutils-2.36 objdump ELF 74,532

size ELF 54,429

strip ELF 65,432

libjpeg-9c djpeg JPEG 9,023

tcpdump-4.99.0 tcpdump PCAP 46,892

libxml2-2.9.12 xmllint XML 73,320

libtiff-4.2.0 tiff2bw TIFF 15,024

mupdf-1.18.0 mutool PDF 123,575

harfbuzz-2.8.0 harfbuzz TTF 9,847

jhead-3.04 jhead JPEG 1,885

times for obtaining the average results to reduce the impact of

randomness. Notably, all the studied fuzzers are executed with

the programs based on AFL instrumentation to collect the run-

time coverage information. To this end, we apply the AFL (v2.57)

llvm-mode (llvm-8.0) to instrument the source code during com-

pilation. We also follow the instructions mentioned in previous

work [11, 17, 19, 20, 41] to construct initial seed corpus. In particu-

lar, we collect initial seeds for libjpeg, libtiff and jhead from
AFL official seed corpus [53] and for the rest projects from their

own test suites.

We adopt the edge coverage to reflect code coverage where an

edge refers to a transition between program blocks, e.g., a condi-

tional jump. We then measure it via the edge number derived by the

AFL built-in tool named afl-showmap, which has been widely used

as a guidance function by many existing fuzzers [8, 20, 33, 34, 50].

Note that the AFL authors also refer to such metrics as “a better

predictor of how the tool will fare in the wild” [51].

3.3 Research Questions
We investigate the following research questions for extensively

studying Havoc.

• RQ1: How does the default Havoc, i.e., the direct application
ofHavoc without modifying its setup or mechanism, perform

on different fuzzers? For this RQ, we attempt to investigate

the performance impact of the default Havoc used in the

studied fuzzers.

• RQ2: How does Havoc perform on different fuzzers under

diverse setups? For this RQ, we investigate the performance

impact of Havoc by enabling Havoc in the studied subjects

under different execution time setups.

3.4 Result Analysis
3.4.1 RQ1: performance impact of the default Havoc. We first inves-

tigate the impact of the default Havoc on the fuzzers with Havoc. As
mentioned in Section 2.2, there can be typically two default setting

types for integrating Havoc to fuzzers. For many fuzzers which

append Havoc as a later fuzzing strategy to their major fuzzing

strategies under each iterative execution, Havoc is launched upon

the termination of their major fuzzing strategies and terminated

after hitting the mutation count determined at runtime (illustrated

in Section 2) without any specific execution time control by default.

As a result, we can infer that the execution time of the defaultHavoc
cannot be deterministic. On the other hand, for the fuzzers which

execute Havoc and their major fuzzing strategies in parallel, the

defaultHavoc is usually executed all along under the execution time.

Therefore, its execution time can be typically equal to the overall

execution time. Figure 2 presents the execution time distribution

of all the studied fuzzers under the total execution time 24 hours

(note that Neuzz and MTFuzz, marked in red, do not have the Havoc
stage by default, and will be discussed later). We can observe that

while AFL, AFL++, and FairFuzz allow quite limited total execution

time of Havoc by default (i.e., from 0.79 hour to 3.09 hours), MOPT

and QSYM allow much longer execution time for Havoc. Note that
the default setting of QSYM utilizes three threads including the

default Havoc. Thus Havoc is executed in QSYM for the whole 24

hours as mentioned in Section 2.2.

Havoc
AFL

AFL++
Fairfuzz
MOPT
Neuzz

MTFuzz
QSYM

0 0.25 0.5 0.75 1
Magor Fuzzing Strategy Havoc

0.0393(0.94 h)
0.0328(0.79 h)
0.1288(3.09 h)
0.6789(16.3 h)

1.0000(24.0 h)

0.1063(2.25 h)
0.0833(2.00 h)
1.0000(24.0 h)

Figure 2: Execution time distribution within 24 hours

We first study the Havoc impact on the five fuzzers with Havoc.
Specifically, we create their variants by deleting Havoc from their

original implementations, i.e., only retaining their major fuzzing

strategies. Table 3 presents the edge coverage results of the five

fuzzers with Havoc in terms of their major fuzzing strategies (repre-

sented as “Major”) and the original implementations (represented

as “Original”) respectively. Generally, we can observe that the edge

coverage of all the studied fuzzers decrease significantly after delet-

ing Havoc from their implementations averagely, i.e., 9.7% in AFL,

27.0% in AFL++, 32.2% in FairFuzz, 79.4% in MOPT, and 62.2% in

QSYM. Combining Figure 2, we can further infer that the 79.4%

edge coverage decrease for MOPT is caused by reassigning 16.3

hours (67.9% of all time budget) originally spent on Havoc to its

major strategy; the 62.2% edge coverage decrease of QSYM is caused

by excluding the thread executing Havoc. Even for AFL and AFL++

which executes their Havoc only less than 1 hour, excluding Havoc
decreases 9.7% in AFL and 27.0% in AFL++ in terms of edge cover-

age. All such facts indicate that Havoc can significantly increase

the edge coverage over the major fuzzing strategies.

We also attempt to append the default Havoc into the fuzzers

without Havoc, i.e., Neuzz and MTFuzz, and further investigate

how the default Havoc can impact their edge coverage performance.

Specifically, their integration follows the sequential pattern adopted

by many existing fuzzers mentioned in Section 2.2, i.e., appending

Havoc after executing the original fuzzing strategies of Neuzz and

MTFuzz under each iterative execution. Therefore, the execution

time of the default Havoc adopted by them cannot be deterministic.

In particular, their execution time distributions are presented in

One Fuzzing Strategy to Rule Them All ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: The edge coverage performance of fuzzers with Havoc

Programs AFL AFL++ FairFuzz MOPT QSYM
Original Major Original Major Original Major Original Major Original Major

readelf 12,112 11,598 9,844 8,268 36,372 20,184 67,505 8,006 69,597 15,984

nm 7,188 6,004 6,049 5,563 16,456 10,627 23,159 5,413 30,359 8,024

objdump 13,748 13,154 13,473 11,829 24,204 16,246 38,027 11,698 41,097 13,439

size 8,262 8,904 4,205 3,643 16,547 10,503 19,172 3,593 23,700 8,459

strip 15,310 14,938 12,116 9,425 26,622 20,870 37,318 9,814 46,633 16,287

djpeg 5,388 7,756 5,474 3,174 10,405 7,782 15,805 3,222 19,295 7,980

tcpdump 14,972 7,192 5,294 1,758 18,457 11,130 44,275 2,477 45,804 16,385

xmllint 18,189 15,314 15,986 13,955 28,174 14,817 49,618 13,632 46,538 20,635

tiff2bw 5,372 5,658 3,767 3,127 8,834 6,340 8,707 3,148 9,301 6,984

mutool 11,529 10,064 11,028 5,677 14,430 10,397 17,438 5,867 17,827 13,653

harfbuzz 21,713 20,513 16,411 9,651 29,939 27,262 54,178 10,365 59,270 26,574

jhead 1,012 636 1,057 404 1,114 633 1,127 452 4,516 2,047

Average 11,233 10,144 8,725 6,373 19,269 13,066 31,361 6,474 34,495 13,038

Table 4: The impact of Havoc on Neuzz and MTFuzz

Programs Pure
Havoc

Neuzz MTFuzz

Origin Integration Origin Integration
Havoc Major Havoc Major

readelf 73,478 43,040 18,530 27,699 40,594 13,967 31,220

nm 20,696 16,002 8,617 12,469 20,863 9,841 12,745

objdump 37,401 29,155 14,619 18,661 25,369 12,057 18,784

size 17,634 13,228 6,191 8,040 12,256 8,593 6,686

strip 38,200 29,767 16,117 18,959 28,981 14,098 22,884

djpeg 16,142 15,805 12,861 8,549 7,640 7,432 5,142

tcpdump 43,482 17,216 20,704 5,755 14,067 19,237 9,727

xmllint 49,269 28,213 15,891 21,386 27,682 14,228 24,692

tiff2bw 8,516 9,168 3,174 6,016 7,254 2,088 5,806

mutool 17,014 15,560 5,171 13,196 14,391 3,976 12,961

harfbuzz 50,549 38,726 12,548 30,191 41,691 15,203 33,742

jhead 1,132 1,078 705 407 992 698 400

Average 31,126 21,413 11,261 14,277 20,148 10,118 15,399

Figure 2 where Neuzz spends 2.25 hours and MTFuzz spends 2

hours on executing the default Havoc.
Table 4 presents the edge coverage results where “Origin” refers

to the original versions of Neuzz and MTFuzz, while “Integration”

refers to Neuzz and MTFuzz integrated with Havoc. We can observe

that overall, for the new integrated version, Havoc can achieve

78.9%/66.0% higher edge coverage than the major fuzzing strategy

of Neuzz/MTFuzz on average. Moreover, the integrated fuzzers can

achieve rather significant performance gain, i.e., 19.3% over the

original Neuzz and 26.6% over the original MTFuzz. To summarize,

we can derive that for all the studied fuzzers (no matter originally

integrated with Havoc or not), appending the default Havoc to them
can significantly enhance their major/original fuzzing strategies.

Finding 1: Applying Havoc by the default setup can signifi-
cantly improve the edge coverage performance of the studied
fuzzers.

Interestingly, we can find from Table 4 that the pure Havoc, i.e.,
using only one seed to launch Havoc and executing it all along

without appending it to any fuzzer, preforms rather strong in terms

of edge coverage, i.e., 31K+ edges on average on all the benchmark

projects. More specifically, the pure Havoc can significantly outper-

form most of the studied fuzzers, e.g., 177% over AFL, 257% over

AFL++, 45% over Neuzz, while obtaining close performance with

MOPT and QSYM. Note that while we can definitely enable multiple

ways, e.g., applying more than one seed, to launch the execution of

the pure Havoc, the fact that using one seed can already achieve

such superior performance can be a strong evidence that Havoc
itself is a powerful fuzzer.

Finding 2: Havoc is essentially a powerful fuzzer—executing
Havoc under one seed without being appended to any fuzzer
for sufficient time can already achieve superior edge coverage
over many existing fuzzers.

We then investigate the correlation between the edge coverage

performance and the execution time of Havoc. We can observe

that while MTFuzz, QSYM, and the pure Havoc can achieve much

stronger edge coverage over the other fuzzers according to Tables 3

and 4, they also have longer execution time for Havoc as shown in

Figure 2. More specifically, the ranking of the edge coverage perfor-

mance can almost strictly align with the ranking of the execution

time of Havoc among all the studied fuzzers (except for Neuzz and

FairFuzz). Therefore, we can infer that for most fuzzers, executing

Havoc for longer time potentially results in higher edge coverage.

Finding 3: Executing Havoc for a longer time upon a fuzzer
can potentially result in stronger edge coverage performance.

3.4.2 RQ2: performance impact of Havoc under diverse setups. In-
spired by the previous findings, we attempt to further investigate

the performance impact of Havoc on the fuzzers under diverse ex-

ecution time setups. Specifically, while implementing the default

Havoc does not concern its execution time, executing Havoc under
diverse execution time setups essentially demands the modified im-

plementation of integrating Havoc to the fuzzers (i.e., the modified

Havoc).
Implementation. Note that in this paper, we first modify the

implementation for integrating Havoc to fuzzers in the sequential

manner. To begin with, it is essential to figure out how to control

the execution time of the major fuzzing strategy and Havoc of a
fuzzer. Specifically, our insight is to retain the fuzzing states of the

major fuzzing strategy and Havoc when they are halting. To this

end, while realizing such insight by directly integrating the source

code of Havoc into different fuzzers essentially demands substantial

engineering effort, we decide to adopt socket programming [46]

as an alternative solution, which can execute the major fuzzing

mechanism and its appended Havoc in different processes since its

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mingyuan Wu†, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming Zhang, and Yuqun Zhang*

Table 5: Edge coverage results of fuzzers with modified Havoc

Programs Havoc QSYM
AFL AFL++ FairFuzz MOPT Neuzz MTFuzz

Orig New Orig New Orig New Orig New Orig New Orig New
readelf 73,478 69,597 12,112 73,842 9,844 72,766 36,372 71,689 67,505 73,175 43,040 70,358 40,594 69,824

nm 20,696 30,359 7,188 21,398 6,049 25,259 16,456 21,537 23,159 26,602 16,002 22,258 20,863 24,387

objdump 37,401 41,097 13,748 36,775 13,473 35,004 24,204 35,802 38,027 37,358 29,155 35,739 25,369 36,203

size 17,634 23,700 8,262 17,296 4,205 18,393 16,547 18,118 19,172 18,707 13,228 16,121 12,256 17,395

strip 38,200 46,633 15,310 37,136 12,116 37,419 26,622 37,724 37,318 40,006 29,767 35,147 28,981 37,548

djpeg 16,142 19,295 5,388 18,543 5,474 15,628 10,405 14,660 15,805 18,127 15,805 23,420 7,640 15,962

tcpdump 43,482 45,804 14,972 40,581 5,294 41,178 18,457 40,407 44,275 44,394 17,216 39,687 14,067 42,317

xmllint 49,269 46,538 18,189 45,869 15,986 46,379 28,174 45,004 49,618 47,190 28,213 45,985 27,682 47,365

tiff2bw 8,516 9,301 5,372 8,093 3,767 7,645 8,834 8,204 8,707 8,083 9,168 9,260 7,254 8,671

mutool 17,014 17,827 11,529 17,325 11,028 17,280 14,430 17,065 17,438 17,504 15,560 19,438 14,391 18,554

harfbuzz 50,549 59,270 21,713 56,058 16,411 52,451 29,939 50,619 54,178 59,314 38,726 51,498 41,691 52,964

jhead 1,132 4,516 1,012 1,129 1,057 1,124 1,114 1,123 1,127 1,133 1,078 1,127 992 1,134

Average 31,126 34,495 11,233 31,170 8,725 30,877 19,296 30,163 31,361 32,633 21,413 30,836 20,148 31,027

Table 6: Average edge coverage results under different execution time setups
Setup AFLℎ𝑎𝑣𝑜𝑐 AFL++ℎ𝑎𝑣𝑜𝑐 FairFuzzℎ𝑎𝑣𝑜𝑐 MOPTℎ𝑎𝑣𝑜𝑐 Neuzzℎ𝑎𝑣𝑜𝑐 MTFuzzℎ𝑎𝑣𝑜𝑐Total Iteration

1h 31,170 30,877 30,163 32,633 30,836 31,027

24h 2h 30,451 31,069 30,853 31,465 31,259 31,265

4h 30,315 30,541 31,296 32,354 31,462 31,472

12h 30,567 30,247 30,543 31,764 30,975 30,865

built-in blocking mechanism can provide the “wake up” function

for both monitoring the execution time of an event given its preset

timeout and retaining the fuzzing states while halting. Note that

such solution can be quite consistent with a single-process fuzzer in

terms of CPU resource consumption. Specifically in the beginning,

we execute the major fuzzing strategy of a fuzzer for time duration 𝑡

to generate new seeds. Subsequently, we transmit the file names of

the generated seeds to Havoc by socket. After completing the whole

seed transmission, Havoc is executed for time duration 𝑡 as well

while the execution of the original fuzzing strategy is paused. Note

that instead of dynamically setting a mutation count for controlling

its execution as the default Havoc, our modified Havoc iteratively
generates new seeds based on the updated collection of the “in-

teresting” seeds within time duration 𝑡 . Similarly after executing

Havoc, we transmit the file names of its generated seeds to the

original fuzzing strategy of the fuzzer via socket for further seed
generations. Such process is iterated until hitting the total time

budget.

Evaluation. We first evaluate Havoc by setting the iterative

time duration 𝑡 of the major fuzzing strategy/Havoc as 1 hour (i.e.,
executing them for 1 hour respectively under each iteration). As a

result, for each fuzzer, its modified Havoc can be executed within a

total of 12 hours under our 24-hour budget. Table 5 presents the

evaluation results of the fuzzers with and without applying such

modified Havoc where “Orig” represents the original fuzzers with
their default implementation and “New” represents the associated

fuzzer integrated with the modified Havoc. Note that since such
setup does not fit for the essential mechanisms of the pure Havoc
and QSYM which execute Havoc for the whole execution, i.e., 24
hours, we retain their results of the previous evaluations in Table 5

simply for illustration and comparison.

We can observe that while MOPT with the modified Havoc can
incur quite close edge coverage compared with its default Havoc

integration as in Table 3, the rest fuzzers with the modified Havoc
can achieve much higher edge coverage compared with their orig-

inal versions, e.g., 1.8X for AFL. Such result can further validate

our Finding 3. Specifically, the original MOPT can already incur

quite long execution time for Havoc by default, i.e., 16.3 hours,

and thus can result in rather strong edge coverage. On the other

hand, the execution time of Havoc for the other fuzzers turns to
be much longer with our new hybrid strategy, and thus results in

a significant performance gain. Note that for the fuzzers which

originally adopts no Havoc (i.e., Neuzz and MTFuzz), their edge

coverage performance can also be significantly improved compared

with their original versions.

More interestingly, we can find that for most fuzzers, they can

incur quite close edge coverage with the modified Havoc on all the

benchmark projects averagely, i.e., around 31K. Moreover, their

project-wise performance can be quite close as well, e.g., around

71K in project readelf and 38K in project objdump. Compared with

the edge coverage from their original versions, their performance

gaps are significantly reduced. To illustrate, we adopt the STD

(Standard Deviation) of the average edge coverage for the studied

fuzzers. Specifically, the STD of all the fuzzers with our new strategy

for integrating Havoc is 819 compared with that of 8,879 when

using their default strategies for integrating Havoc, while their

average edge coverage is 31,118 compared with 20,278. Such result

can indicate that by executing Havoc for sufficient time, the edge

coverage performance gaps of different fuzzers can be significantly

reduced. On the other hand, while the performance of many studied

fuzzers are significantly improved by extending the execution time

of Havoc in a sequential manner, their performance are rather close

to the pure Havoc. Such facts indicate that Havoc can potentially

dominate many fuzzers in terms of edge coverage.

We also include block coverage rate (i.e., the number of accessed

basic blocks divided by the total number of basic blocks) [23, 50] to

One Fuzzing Strategy to Rule Them All ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

0

5

10

15

20

25

Havoc QSYM AFL AFL++ FairFuzz MOPT Neuzz MTFuzz

Original

Integration

Figure 3: Block coverage of different fuzzers with modified
Havoc

strengthen our findings. We can observe in Figure 3 that almost all

the studied fuzzers significantly increase block coverage compared

with their original implementations, e.g., 42.7% for AFL, and 26.9%

for MTFuzz. Moreover, all the studied fuzzers achieve quite close

block coverage rates after integrating Havoc with the average block

coverage rate of 18.7% and STD of 0.00465, which are consistent

with the edge coverage trends.

Finding 4: Executing Havoc for sufficient time can dominate
the performance of the studied fuzzers and significantly
reduce their performance gaps.

We further attempt to investigate how changing the integration

mode of Havoc with fuzzers can impact their edge coverage perfor-

mance. To this end, we first enable diverse setups of the iterative

time duration 𝑡 of Havoc in terms of 2 hours, 4 hours, and 12 hours

under the total execution time of 24 hours. Table 6 presents the

evaluation results under such setups. We can observe that overall,

there is no significant performance difference under all the setups.

Specifically, the largest gap of the average edge coverage of a given

fuzzer is only 3.76%. Such fact can indicate that the edge coverage

performance is somewhat resilient to time duration 𝑡 , i.e., under

sufficient total execution time, adapting the execution time ofHavoc
under each iteration results in rather limited impact on the edge

coverage of the associated fuzzer.

26000

28000

30000

32000

34000

36000

QSYM AFL AFL++ FairFuzz MOPT Neuzz MTFuzz

Hybrid-2 Hybrid-1 Sequential

Figure 4: Edge coverage of different fuzzers with the hybrid
integration of Havoc

Finding 5: As long as the total execution time of Havoc is
fixed, how to adapt its iterative execution can have limited
impact on the edge coverage performance of the associated
fuzzer.

While the performance gaps between different fuzzers can be

significantly reduced by applying the modified Havoc, QSYM can

still outperform the other fuzzers by at least 10%. Accordingly, we

hypothesize that executing multiple fuzzing strategies in parallel

can be potentially more advanced in boosting edge exploration. We

then attempt to validate such hypothesis by also adopting addi-

tional threads for executing Havoc in parallel in our studied fuzzers,

i.e., while retaining the execution of their modified Havoc in the

sequential manner for 12 hours, we also execute Havoc for the

whole 24 hours in parallel in additional threads. In particular, we

adopt one and two additional threads for executing Havoc respec-
tively. Figure 4 presents our evaluation results. We observe that

when adopting one additional thread to execute Havoc (labelled as

“Hybrid-1”), averagely the edge coverage of all the studied fuzzers

can be increased by 7.4%. Moreover, we can also observe that com-

pared with adopting one additional thread for Havoc, adopting two

additional threads for Havoc (labelled as “Hybrid-2”) can further

increase the edge coverage performance by 2.9% on top of all the

studied fuzzers. Compared with QSYM which originally achieves

the optimal performance via using three threads for fuzzing, MOPT

and AFL can now even incur performance gains of 1.2% and 0.4%.

On the other hand, since the performance gain by simply increasing

additional threads for executing Havoc becomes marginal, we can

infer that simply investing more computing resource on executing

Havoc may not be cost-effective.

Finding 6: Investing more computing resource in executing
Havoc can potentially reduce its execution time for approach-
ing the performance bound, but may not be cost-effective.

While the previous findings reveal that under sufficient execu-

tion time of Havoc, multiple fuzzers can approach quite close edge

coverage performance, we further attempt to investigate how com-

mon their explored edges can be. To this end, we determine to adopt

the concept of Jaccard Distance [44] to delineate the similarity of

the explored edges from different fuzzers. In particular, Jaccard
Distance is usually used to measure the dissimilarity between two

sets by dividing the difference of their union size and intersection

size by their union size. Figure 5 presents the evaluation results of

seed dissimilarity between the pure Havoc and the other fuzzers

(with the modified Havoc) on average, ranging from 0.134 to 0.256.

Such result indicates that applying Havoc to different fuzzers can

potentially explore quite common edges. Note that QSYM has the

biggest Jaccard Distance although it executes Havoc for 24 hours.
The main reasons can be that 1) QSYM invests more computing

resource, i.e., leveraging three threads running in parallel, and 2)

QSYM leverages concolic execution [14] that may explore different

paths compared with fuzzing. Furthermore, MTFuzz and Neuzz also

have large Jaccard Distance mainly because they further use neural

networks to guide the fuzzing process.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mingyuan Wu†, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming Zhang, and Yuqun Zhang*

0.153

0.153

0.16

0.134

0.249

0.251

0.256

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Havoc-AFL

Havoc-AFL++

Havoc-FairFuzz

Havoc-MOPT

Havoc-Neuzz

Havoc-MTFuzz

Havoc-QSYM

Figure 5: The average Jaccard Distance of different fuzzers
in all studied programs.

Finding 7: Applying Havoc to different fuzzers potentially
explores rather common edges, while fuzzers guided by con-
colic execution or neural networks can better complement
Havoc.

At last, we investigate the impact of appending Havoc on expos-

ing program vulnerabilities. To this end, we attempt to collect the

program crashes caused by executing the generated seeds with and

without appending Havoc to all the studied fuzzers. Note that when
we append Havoc to fuzzers, we ensure that it can be executed

under sufficient time to fully leverage its power.

To begin with, it is essential to identify unique crashes since

it is likely that many crashes are caused by the same program

vulnerability. In this paper, we follow prior work [6, 7, 9, 19, 20,

25, 52] to identify the unique crashes only if they increase edge

coverage. Note that in this paper, all of the crashes are explored by

all of our previous evaluations. While a crash can only be reported

once among all the fuzzing strategies (including Havoc) within a

fuzzer, it can be possibly explored by different fuzzers. We then

divide crashes into two sets, i.e., the ones explored by the involved

Havoc mechanisms and the ones explored by the major fuzzing

strategies. At last, we count the unique crashes for the two sets

respectively.

Table 7 presents the results of the unique crashes. Overall, we

derive 256 unique crashes from a total of 879 crashes where 243

(95%) are exposed by Havoc and 13 are exposed by their original

fuzzing strategies, e.g., the constraint-solving-based mutations in

QSYM and the gradient-driven mutations in Neuzz. Note that we

exposed 69 unique cashes which have been fixed in the latest ver-

sions of their associated projects [3–5, 13]. We also report the rest

unknown crashes (i.e., they can be exposed in the latest version) to

the corresponding developers [2, 27]. The detailed bug report can

be found in our GitHub page [32]. Moreover, applying Havoc can
expose the crashes in 7 of the 12 total benchmark projects and be

powerful in exposing unique crashes in projects nm (78 out of 79)
and jhead (96 out of 107). Such facts indicate that applying Havoc
can not only successfully advance program vulnerability exposure,

but also potentially dominate the vulnerability exposure on certain

projects.

Table 7: The unique crashes found by Havoc

Programs Crashes Unique crashes
Havoc Major

readelf (V2.30) 81 50 0

nm (V2.36) 89 78 1

objdump (V2.30) 1 1 0

size (V2.30) 4 2 1

strip (V2.30) 12 12 0

djpeg (V9c) 4 4 0

jhead (V3.04) 688 96 11

Total 879 243 13

Finding 8: Havoc can also play a vital role in exposing po-
tential program vulnerabilities.

4 ENHANCING HAVOC
So far, our presented powerful performance of Havoc is simply

caused by modifying its setups, including its execution time and

integration modes with fuzzers. In this section, we attempt to in-

vestigate whether the power of Havoc can be further boosted. To

this end, we first investigate the performance impact of the muta-

tor stacking mechanism adopted by Havoc, and then propose an

intuitive and lightweight technique to improve its performance

accordingly.

4.1 Performance Impact of the Mutator
Stacking Mechanism

Note that as a simplified mutation strategy, the mutator stacking

mechanism contains two steps: determining stacking size and ran-

domly selecting mutators, to impact the performance of Havoc. We

then investigate the performance impact caused by each step. In

particular, we first attempt to investigate the performance impact of

stacking size. To this end, instead of randomly determining stacking
size for mutating seeds at runtime of Havoc originally, we imple-

ment Havoc under a fixed stacking size for all its mutations. Figure 6

presents our evaluation results of the edge coverage ratio results in

terms of all the possible fixed stacking size, i.e., 2, 4, 8,...128, on top

of all the studied benchmark projects. Note that the edge coverage

ratio of one project is computed as the the explored edge number in

terms of one fixed stacking size over the total explored edge number

of all the fixed stacking sizes. We can observe that overall, the stack-
ing size which causes the optimal edge coverage performance for

each studied project can be quite divergent, e.g., selecting stacking
size 8, 2, and 32 can optimize the edge coverage in tcpdump, djpeg,
and mutool respectively. Such results suggest that it is essential to

adapt the stacking size setup for different projects to optimize their

respective edge coverage.

We then investigate the performance impact from mutators. To

this end, instead of uniformly selecting mutators out of a total of 15

mutators, we first uniformly select chunk mutators or unit mutators
and then randomly select their inclusive mutators under the given

stacking size for mutating one seed. Figure 7 presents the edge

coverage ratio results in terms of the selected mutator types on top

of all the studied benchmark projects. Note that the edge coverage

ratio is computed as the explored edge number by either chunk

One Fuzzing Strategy to Rule Them All ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Algorithm 1 The Framework of Havoc𝑀𝐴𝐵

Input : seed
Output:newseed

1: function MULTI_ARMED_UCB_SELECTION

2: newseed← seed

3: stacksize← selectStackArm()

4: mutatortype← selectMutatorTypeArm(stacksize)

5: for iteration in stacksize do
6: mutator← randomSelectMutatorByType(mutatortype)

7: newseed← generateNewSeed(mutator, newseed)

8: reward← 0

9: if isInteresting(newseed) then
10: reward← 1

11: updateStackBandit(reward, stacksize)
12: updateMutatorTypeBandit(reward, stacksize, mutatortype)

13: return newseed

mutators or unit mutators over their total explored edge number.

We can observe that overall, the distribution of the edge coverage

ratio performance can be quite divergent among different projects,

e.g., the edge coverage ratio of the unit mutators ranges from 18.39%

(xmllint) to 94.53% (tiff2bw). Such results suggest that it is also

essential to adapt the selection of the mutator types for different

projects to optimize their respective edge coverage performance.

Figure 6: Edge coverage for different fixed stack sizes

0

0.2

0.4

0.6

0.8

1

readelf nm objdump size strip djpeg tcpdump xmlint tiff2bw mutool harfbuzz jhead

Unit Chunk

Ed
ge

 C
ov

Ra
tio

Figure 7: Edge coverage for unit mutators and chunk muta-
tors

4.2 Approach
Inspired by the evaluation results above, we attempt to propose

solutions to enhance Havoc via dynamically adjusting the project-

wise selections on stacking size and mutators. Also, note that our

previous findings reveal that to unleash the power of Havoc, it is
essential to invest strong computing resources for Havoc. Accord-
ingly, our design adopts the following principles. First, we only

enable single thread/process, i.e., enhancing Havoc via only apply-

ing our specifically designed technique instead of leveraging more

threads for more computing resource as found already. Second,

our technique should be lightweight. In particular, when designing

a technique for adjusting Havoc given the deterministic comput-

ing resource, ideally we aim for minimizing its overhead while

maximizing the execution time for the Havoc mechanism itself.

In this paper, we propose a lightweight single-threaded tech-

nique Havoc𝑀𝐴𝐵 (MAB refers toMulti-Armed Bandit), for the pure
Havoc to automatically adjust its selections on stacking size and
mutators at runtime for facilitating its edge exploration. Specif-

ically, we determine to model our task as a multi-armed bandit

problem [45] which typically refers to allocating limited resources

to alternative choices (i.e., stacking size and mutator selections for

this problem) to maximize their expected gain (i.e., edge coverage

for this problem). More specifically, we design a two-layer multi-

armed bandit machine, i.e., a stacking size-level bandit machine and

amutator-level bandit machine, which is presented in Figure 8. Note

that the stacking size-level bandit machine enables 7 arms where

each arm is designed corresponding to a stacking size choice, i.e., 2,
4, 8,...128. After an arm of stacking size is chosen, the mutator-level

bandit machine which enables 2 arms representing chunk mutators
and unit mutators would first make a choice out of them and then

proceed to select the exact mutators via uniform distribution. Even-

tually, Havoc𝑀𝐴𝐵 generates a mutant via the selected mutators and

executes it on the program under test for obtaining environmental

feedback for further executions.

Stacking Size
Bandit

… 128-Bandit

4-Bandit2-Bandit

Stacking Size Mutator Type

Seed
Corpus

Seed Mutant

 .C
Program
 Explore New

Edges?

Mutator Type Bandits

Mutator Stacking

Mutator Mutator Mutator Mutator

Input HavocMAB Mutation Stage Execution Output

Seed
Corpus

Updating Bandits

YES

NO
Discard

Figure 8: The Framework of Havoc𝑀𝐴𝐵

0

10,000

20,000

30,000

40,000

0 4 8 12 16 20 24

Ed
ge

 C
ov

er
ag

e

Time (hours)

Havoc HavocMAB Havoc3MABQSYM

, p1 = 0.00507 p2 = 0.01219

Figure 9: The average edge coverage of Havoc𝑀𝐴𝐵 over time

We adopt thewidely-used UCB1-Tuned [1] algorithm to solve our

proposed multi-armed bandit problem. Equation 1 demonstrates

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mingyuan Wu†, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming Zhang, and Yuqun Zhang*

0

50,000

100,000

0 6 12 18 24
0

20,000

40,000

0 6 12 18 24
0

25,000

50,000

0 6 12 18 24
0

15,000

30,000

0 6 12 18 24
0

25,000

50,000

0 6 12 18 24
0

12,500

25,000

0 6 12 18 24

0

30,000

60,000

0 6 12 18 24
0

40,000

80,000

0 6 12 18 24
0

10,000

20,000

0 6 12 18 24
0

12,500

25,000

0 6 12 18 24
0

40,000

80,000

0 6 12 18 24
0

2,500

5,000

0 6 12 18 24

readelf nm objdump size strip djpeg

tcpdump xmllint tiff2bw mutool harfbuzz jhead

Time (hours)

Ed
ge

 C
ov

er
ag

e

Havoc HavocMAB Havoc3MABQSYM

Figure 10: Edge coverage of Havoc𝑀𝐴𝐵 over time

how to select an 𝑎𝑟𝑚 under such algorithm for a given bandit

machine at time 𝑡 . In particular, 𝑥 𝑗 refers to the average reward for

𝑎𝑟𝑚 𝑗 till time 𝑡 , 𝑛 refers to the total execution count for the bandit

machine and 𝑛 𝑗 refers to the execution count for 𝑎𝑟𝑚 𝑗 , 𝜎 𝑗 refers to

the sample variance of 𝑎𝑟𝑚 𝑗 .

𝑎𝑟𝑚(𝑡) = arg max

𝑗

(
𝑥 𝑗 +

√︄
ln𝑛

𝑛 𝑗
𝑚𝑖𝑛(

1

4

, 𝜎 𝑗 +
2 ln𝑛

𝑛 𝑗
)

)
(1)

Note that we define the reward at time 𝑡 as whether Havoc𝑀𝐴𝐵 has

explored new edges or not for all the eight bandit machines. If a

seed generated by a chosen stacking size and its selected mutators

can explore new edges, the rewards returned to the stacking size-
level bandit machine and its corresponding mutator-level bandit

machine are both 1; otherwise, they are both 0.

Algorithm 1 presents our overall approach. Havoc𝑀𝐴𝐵 first se-

lects stacking size for the executing seed and then selects its corre-

sponding mutator type (Lines 3 to 4). Next, Havoc𝑀𝐴𝐵 generates a

mutant by uniformly selecting the mutators of stacking size under
the chosen type (Lines 5 to 7). Eventually, if such mutant explores

new edges, we set the reward as 1 for its corresponding stacking size-
level and mutator-level bandit machines (0 otherwise) to update

Equation 1 for further executions (Lines 8 to 12).

4.3 Evaluation
To evaluate Havoc𝑀𝐴𝐵 , we include QSYM for performance compar-

ison since it presents the optimal edge coverage performance in our

previous studies. Furthermore, we design a variant of Havoc𝑀𝐴𝐵

namely Havoc3

𝑀𝐴𝐵
where Havoc𝑀𝐴𝐵 is executed in three threads

in parallel for comparing with QSYM under identical computing

resources. We also include the pure Havoc as a baseline. Similar as

Section 3.2, we execute each variant for five times for each bench-

mark project to reduce the impact of randomness.

Figure 9 presents the average evaluation results of edge coverage

of the studied approaches on top of all the benchmark projects under

24-hour execution. We can observe that Havoc𝑀𝐴𝐵 achieves sig-

nificantly better performance than pure Havoc, i.e., increasing the
average edge coverage among all the benchmark projects by 11.1%

(34,574 vs 31,126 explored edges). Moreover, we apply the Mann-

Whitney U test [26] to illustrate the significance of Havoc𝑀𝐴𝐵 . The

fact that the 𝑝-value of Havoc𝑀𝐴𝐵 comparing with Havoc in terms

of the average edge coverage is 0.00507 indicates that Havoc𝑀𝐴𝐵

outperforms Havoc significantly (𝑝 < 0.05). Interestingly, although

Havoc𝑀𝐴𝐵 only adopts one thread for execution, it can slightly

outperform QSYM (which leverages three threads for execution)

by 0.2% on average among all 5 runs with the STD of 108.55. It can

also outperform QSYM for 4 out of 5 runs. On the other hand, exe-

cuting Havoc3

𝑀𝐴𝐵
can result in 9% edge coverage gain over QSYM

(37,614 vs 34,495 explored edges) with a 𝑝-value of 0.01219. Such

results altogether can demonstrate the strength of our proposed

Havoc𝑀𝐴𝐵 .

Figure 10 presents the edge coverage trends of our studied ap-

proaches upon each benchmark for 24-hour execution. Overall,

Havoc𝑀𝐴𝐵 outperforms pure Havoc in most of the benchmarks sig-

nificantly. Moreover, Havoc𝑀𝐴𝐵 can outperform QSYM by at least

10% (60%more in tiff2w) in terms of edge coverage on five projects

while incurring rather close performance on the rest projects with

a single thread except jhead. Meanwhile, Havoc3

𝑀𝐴𝐵
can achieve

the optimal edge coverage performance on eight benchmarks. Note

that QSYM outperforms all other fuzzers in jhead (averagely 4,516

vs. 1,063). This demonstrates that grey-box fuzzing strategies alone

are ineffective for jhead while the effectiveness can be largely im-

proved by concolic execution leveraged in QSYM. Based on this

observation and Finding 7, we highly recommend future research

to investigate more powerful techniques for combining Havoc, con-
colic execution, and learning-based fuzzing.

5 THREATS TO VALIDITY
Threats to internal validity. One threat to internal validity lies

in the implementation of the studied fuzzers in our evaluation. To

reduce this threat, we reused their original source code for our

implementation and experimentation directly. Moreover, the first

4 authors manually reviewed all the code carefully to ensure its

correctness and consistency.

Threats to external validity. The threats to external validity

mainly lie in the subjects and benchmarks. To reduce the threats,

we select 8 representative state-of-the-art fuzzers, including AFL-

based, concolic-execution-based, and neural program-smoothing-

based fuzzers. We also adopt 12 benchmark projects according to

One Fuzzing Strategy to Rule Them All ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

their popularity, i.e., the most frequently used benchmarks by the

original papers of our studied fuzzers. Another threat to external

validity may lie in the randomness of the evaluation results. To

reduce this threat, all the evaluation results are averaged upon five

runs to reduce the impact of randomness.

Threats to construct validity. The threat to construct validity

mainly lies in the main metric used in this paper, i.e., edge coverage,

to reflect code coverage. To reduce this threat, while there can be

various ways to measure edge coverage, we choose to follow many

existing fuzzers [8, 20, 33, 34, 50] and leverage the AFL built-in tool

named afl-showmap for collecting edge coverage. Furthermore, we

have also evaluated fuzzing effectiveness in terms of the number of

unique crashes.

6 RELATEDWORK
Fuzzing. AFL [52] is one of the most popular fuzzers and has in-

spired many other recent fuzzers for different application domains.

Fioraldi et al. [12] integratedmultiple techniques, e.g., taint tracking,

into the basic framework of AFL. Liang et al. [23] also introduced

a path-aware taint analysis fuzzer to facilitate the efficiency of

fuzzing. Böhme et al. [7] utilized a Markov chain model to allocate

energy for seed selection. Peng et al. [30] proposed T-Fuzz, which

removes sanity checks from the target program and then lever-

ages a symbolic execution engine to generate a path to the buggy

point if it finds any crash. Honggfuzz [15] boosted the efficacy of

fuzzing under multiple processes and threads while Chen et al. [10]

proposed a synchronization mechanism for integrating different

fuzzers. Wang et al. [38] proposed SYZVEGAS to fuzz the kernel

of operating systems by dynamically adjusting fuzzing strategies

via reinforcement learning. Li et al. [21] introduced Steelix, which

integrates light-weight static analysis to coverage-guide fuzzing.

Wang et al. [39] proposed Skyfire, which leverages the knowledge

in the vast amount of existing samples to generate well-distributed

seed inputs for fuzzing programs that process highly-structured

inputs. They have also proposed a grammar-aware coverage-based

greybox fuzzing approach, named Superion [40], to fuzz programs

that process structured inputs. In more recent years, researchers

have also proposed various techniques for fuzzing different types

of software systems [29, 36, 42, 55]. Wu et al. [48, 49] proposed to

detect CUDA synchronization bugs via fuzzing and repair them

automatically. Zhang et al. [54] proposed DeepRoad to generate im-

ages to fuzz image-based driving systems. Zhou et al. [56] generated

realistic and continuous images to fuzz such systems. In this paper,

we propose a technique to dynamically adjust mutation selections

for Havoc and result in strong edge coverage performance.

Studies on Fuzzing/Testing. Shen et al. [35] investigated different

bugs on different deep learning compilers. Metzman et al. [28]

introduced a platform for developers and researchers to evaluate

different fuzzers. Although they studied Havoc associated with

fuzzers, they did not evaluate it independently. Klees et al. [19] sur-

veyed the recent research literature and assessed the experimental

evaluations to illustrate the essential experimental setup for reliable

experiments for fuzzing. We actually follow the instruction of this

work to construct our initial seed corpus. Furthermore, Herrera et

al. [16] systematically investigated and evaluated how seed selec-

tion affects the performance of a fuzzer to expose vulnerabilities

in real-world systems. Many researchers studied the rationales be-

hind fuzzing approaches. Wu et al [47] empirically evaluated the

neural program-smoothing-based fuzzers and improved them by

proposing lightweight learning-based mutation strategies. Liang

et al. [22] presented the main obstacles and corresponding typical

solutions for fuzzing. Tonder et al. [37] presented a technique to

map crashing inputs to unique bugs using program transformation.

In this paper, we conduct the first extensive study on Havoc to
demonstrate that Havoc is a powerful fuzzer, and have also shown

that it is possible to further advance Havoc.

7 CONCLUSION
In this paper, we investigate the impact and design of a random

fuzzing strategyHavoc. We first conduct an extensive study to evalu-

ate the impact ofHavoc by applyingHavoc to a set of studied fuzzers
on real-world benchmarks. The evaluation results demonstrate that

the pure Havoc can already achieve superior edge coverage and

vulnerability detection compared with other fuzzers. Moreover,

integrating Havoc to a fuzzer or extending total execution time

for Havoc can also increase the edge coverage significantly. The

performance gap among different fuzzers can also be considerably

reduced by appending Havoc. At last, we also design a lightweight

approach to further boost Havoc by dynamically adjusting its mu-

tation strategy.

8 ACKNOWLEDGEMENT
This work is partially supported by the National Natural Science

Foundation of China (Grant No. 61902169), Guangdong Provincial

Key Laboratory (Grant No. 2020B121201001), and Shenzhen Pea-

cock Plan (Grant No. KQTD2016112514355531). This work is also

partially supported by National Science Foundation under Grant

Nos. CCF-2131943 and CCF-2141474, as well as Ant Group.

REFERENCES
[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47, 2 (2002), 235–256.

[2] GNU Binutils. 2021. Bug 28269 - [nm] stack-overflow in nm-new ’demangle path’.

https://sourceware.org/bugzilla/show_bug.cgi?id=28269.

[3] GNU Binutils. 2021. Bug 28272 - [strip] SEGV in group signature - v2.30. https:

//sourceware.org/bugzilla/show_bug.cgi?id=28272.

[4] GNU Binutils. 2021. Bug 28273 - [strip] heap-use-after-free in ’group signature’.

https://sourceware.org/bugzilla/show_bug.cgi?id=28273.

[5] GNU Binutils. 2021. Bug 28274 - [strip] heap-buffer-overflow. https://sourceware.

org/bugzilla/show_bug.cgi?id=28274.

[6] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-

hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 2329–2344.

https://doi.org/10.1145/3133956.3134020

[7] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-

Based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1032–1043.

https://doi.org/10.1145/2976749.2978428

[8] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.

In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.
[9] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.

In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.
[10] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou,

Xun Jiao, and Zhuo Su. 2019. Enfuzz: Ensemble fuzzing with seed synchronization

among diverse fuzzers. In 28th {USENIX} Security Symposium ({USENIX} Security
19). 1967–1983.

[11] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,

Tao Wei, and Long Lu. 2020. Savior: Towards bug-driven hybrid testing. In 2020

https://sourceware.org/bugzilla/show_bug.cgi?id=28269
https://sourceware.org/bugzilla/show_bug.cgi?id=28272
https://sourceware.org/bugzilla/show_bug.cgi?id=28272
https://sourceware.org/bugzilla/show_bug.cgi?id=28273
https://sourceware.org/bugzilla/show_bug.cgi?id=28274
https://sourceware.org/bugzilla/show_bug.cgi?id=28274
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/2976749.2978428

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mingyuan Wu†, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming Zhang, and Yuqun Zhang*

IEEE Symposium on Security and Privacy (SP). IEEE, 1580–1596.
[12] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:

Combining incremental steps of fuzzing research. In 14th {USENIX} Workshop
on Offensive Technologies ({WOOT} 20).

[13] Probe Fuzzer. 2018. Reachable assertion in find section (src/binutils/readelf.c).

https://lists.gnu.org/archive/html/bug-binutils/2018-02/msg00076.html.

[14] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed auto-

mated random testing. In Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation. 213–223.

[15] Google. 2021. Honggfuzz. https://github.com/google/honggfuzz.

[16] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,

and Antony L Hosking. 2021. Seed selection for successful fuzzing. In Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 230–243.

[17] Heqing Huang, Peisen Yao, Rongxin wu, Qingkai Shi, and Charles Zhang. 2020.

Pangolin: Incremental Hybrid Fuzzing with Polyhedral Path Abstraction. 1613–

1627. https://doi.org/10.1109/SP40000.2020.00063

[18] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In

Proceedings of ICNN’95-international conference on neural networks, Vol. 4. IEEE,
1942–1948.

[19] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2123–2138.

[20] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy

for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 475–485.

[21] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,

and Alwen Tiu. 2017. Steelix: Program-State Based Binary Fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,

Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York,

NY, USA, 627–637. https://doi.org/10.1145/3106237.3106295

[22] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei Zhang. 2018.

Fuzz testing in practice: Obstacles and solutions. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 562–566.
https://doi.org/10.1109/SANER.2018.8330260

[23] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and J. Sun. 2022. PATA:

Fuzzing with Path Aware Taint Analysis. In 2022 2022 IEEE Symposium on Security
and Privacy (SP) (SP). IEEE Computer Society, Los Alamitos, CA, USA, 154–170.

https://doi.org/10.1109/SP46214.2022.00010

[24] LLVM. 2021. LibFuzzer. https://llvm.org/docs/LibFuzzer.html.

[25] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and

Raheem Beyah. 2019. {MOPT}: Optimized mutation scheduling for fuzzers. In

28th {USENIX} Security Symposium ({USENIX} Security 19). 1949–1966.
[26] Thomas W MacFarland and Jan M Yates. 2016. Mann–whitney u test. In Intro-

duction to nonparametric statistics for the biological sciences using R. Springer,
103–132.

[27] Matthias-Wandel. 2021. Nonfatal Error by heap-buffer-overflow (version 3.04).

https://github.com/Matthias-Wandel/jhead/issues/42.

[28] JonathanMetzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek

Arya. 2021. FuzzBench: An Open Fuzzer Benchmarking Platform and Service.

In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,

Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,

USA, 1393–1403. https://doi.org/10.1145/3468264.3473932

[29] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.

Tensorfuzz: Debugging neural networks with coverage-guided fuzzing. In Inter-
national Conference on Machine Learning. PMLR, 4901–4911.

[30] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by

Program Transformation. In 2018 IEEE Symposium on Security and Privacy (SP).
697–710. https://doi.org/10.1109/SP.2018.00056

[31] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing.. In

NDSS, Vol. 17. 1–14.
[32] Github Repository. 2021. Havoc-Study. https://github.com/MagicHavoc/Havoc-

Study.

[33] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. 2020.

MTFuzz: fuzzing with a multi-task neural network. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 737–749.

[34] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman

Jana. 2019. NEUZZ: Efficient fuzzing with neural program smoothing. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 803–817.

[35] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,

and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.

In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 968–980.

[36] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated

testing of deep-neural-network-driven autonomous cars. In Proceedings of the

40th international conference on software engineering. 303–314.
[37] Rijnard van Tonder, John Kotheimer, and Claire le Goues. 2018. Semantic Crash

Bucketing. In 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). 612–622. https://doi.org/10.1145/3238147.3238200

[38] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V. Krishna-

murthy, and Nael Abu-Ghazaleh. 2021. SyzVegas: Beating Kernel Fuzzing Odds

with Reinforcement Learning. In 30th USENIX Security Symposium (USENIX Secu-
rity 21). USENIX Association, 2741–2758. https://www.usenix.org/conference/

usenixsecurity21/presentation/wang-daimeng

[39] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven

Seed Generation for Fuzzing. In 2017 IEEE Symposium on Security and Privacy
(SP). 579–594. https://doi.org/10.1109/SP.2017.23

[40] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-

aware greybox fuzzing. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). IEEE, 724–735.

[41] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu,

and Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by

Coverage Accounting for Input Prioritization.. In NDSS.
[42] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free

Lunch for Testing: Fuzzing Deep-Learning Libraries from Open Source. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE).

[43] Wikipedia. 2021. Exposing Bugs by Fuzzing. https://en.wikipedia.org/wiki/

Fuzzing#Exposing_bugs.

[44] Wikipedia. 2021. Jaccard Distance. https://en.wikipedia.org/wiki/Jaccard_index.

[45] Wikipedia. 2021. Multi-armed Bandit Problem. https://en.wikipedia.org/wiki/

Multi-armed_bandit.

[46] Wikipedia. 2021. Socket programming. https://en.wikipedia.org/wiki/Network_

socket.

[47] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yuqun Zhang, Guowei Yang, Huixin

Ma, Sen Nie, Shi Wu, Heming Cui, and Lingming Zhang. 2022. Evaluating and

Improving Neural Program-Smoothing-based Fuzzing. In 2022 IEEE/ACM 44th
International Conference on Software Engineering (ICSE).

[48] Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu,

and Yuqun Zhang. 2020. Simulee: Detecting cuda synchronization bugs via

memory-access modeling. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 937–948.

[49] Mingyuan Wu, Lingming Zhang, Cong Liu, Shin Hwei Tan, and Yuqun Zhang.

2019. Automating CUDA Synchronization via Program Transformation. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
748–759. https://doi.org/10.1109/ASE.2019.00075

[50] Insu Yun, Sangho Lee,MengXu, Yeongjin Jang, and Taesoo Kim. 2018. {QSYM}: A
practical concolic execution engine tailored for hybrid fuzzing. In 27th {USENIX}
Security Symposium ({USENIX} Security 18). 745–761.

[51] Michal Zalewski. 2016. Edge Coverage Dopted in AFL. https://groups.google.

com/g/afl-users/c/fOPeb62FZUg/m/LYxgPYheDwAJ.

[52] Michał Zalewski. 2020. American Fuzz Lop. https://github.com/google/AFL.

[53] Michał Zalewski. 2021. AFL Official Seed Corpus. http://lcamtuf.coredump.cx/

afl/demo/.

[54] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-

shid. 2018. DeepRoad: GAN-Based Metamorphic Testing and Input Valida-

tion Framework for Autonomous Driving Systems. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). 132–142.
https://doi.org/10.1145/3238147.3238187

[55] Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun

Zhang, and Lingming Zhang. 2022. History-Driven Test Program Synthesis

for JVM Testing. In 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE).

[56] Husheng Zhou,Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei Yu, Lingming

Zhang, and Cong Liu. 2020. DeepBillboard: Systematic Physical-World Testing of

Autonomous Driving Systems. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). 347–358.

https://lists.gnu.org/archive/html/bug-binutils/2018-02/msg00076.html
https://github.com/google/honggfuzz
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1109/SANER.2018.8330260
https://doi.org/10.1109/SP46214.2022.00010
https://llvm.org/docs/LibFuzzer.html
https://github.com/Matthias-Wandel/jhead/issues/42
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1109/SP.2018.00056
https://github.com/MagicHavoc/Havoc-Study
https://github.com/MagicHavoc/Havoc-Study
https://doi.org/10.1145/3238147.3238200
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://doi.org/10.1109/SP.2017.23
https://en.wikipedia.org/wiki/Fuzzing##Exposing_bugs
https://en.wikipedia.org/wiki/Fuzzing##Exposing_bugs
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Multi-armed_bandit
https://en.wikipedia.org/wiki/Multi-armed_bandit
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Network_socket
https://doi.org/10.1109/ASE.2019.00075
https://groups.google.com/g/afl-users/c/fOPeb62FZUg/m/LYxgPYheDwAJ
https://groups.google.com/g/afl-users/c/fOPeb62FZUg/m/LYxgPYheDwAJ
https://github.com/google/AFL
http://lcamtuf.coredump.cx/afl/demo/
http://lcamtuf.coredump.cx/afl/demo/
https://doi.org/10.1145/3238147.3238187

	Abstract
	1 Introduction
	2 Background
	2.1 Mutators and Mutator Stacking
	2.2 Integration

	3 Havoc impact study
	3.1 Subjects & Benchmarks
	3.2 Evaluation Setups
	3.3 Research Questions
	3.4 Result Analysis

	4 Enhancing Havoc
	4.1 Performance Impact of the Mutator Stacking Mechanism
	4.2 Approach
	4.3 Evaluation

	5 Threats to validity
	6 Related work
	7 Conclusion
	8 Acknowledgement
	References

